低秩矩阵分解推荐

  • 矩阵分解算法

    目录 一·、定义(什么是矩阵分解) 二、矩阵分解的原理 三、矩阵分解的方法 四、矩阵分解的步骤 五、代码实现 六、矩阵分解的优缺点 矩阵分解就是预测出评分矩阵中的缺失值,然后根据预测值以某种方式向用户推荐。常见的矩阵分解方法有基本矩阵分解(basic MF),正

    2024年01月30日
    阅读 33
  • 矩阵分解及其Eigen实现

    主要是用来记录自己的学习过程,内容也主要来自于网上的各种资料,然后自己总结而来,参考的资料都以注明,感谢这些作者的分享。如果内容有误,请大家指点。 定义        将矩阵等价为两个矩阵 L L L 和 U U U 的乘积 ,其中 L L L 和 U U U 分别是单位下三角矩阵和上三角

    2024年02月03日
    阅读 47
  • 矩阵分析:QR分解

    Householder变换是一种简洁而有意思的线性变换,也可称为镜面反射变换,Householder变换矩阵为 H = I − w T w H=I-w^Tw H = I − w T w 考虑向量 α alpha α 和一个单位向量 w : w T w = 1 w:w^{T}w=1 w : w T w = 1 α alpha α 在 w w w 方向上的分量是 α w / / = ( w T α ) w = w w T α alpha _{w_{//}}=left( w^{T}

    2024年02月11日
    阅读 54
  • 矩阵的奇异值分解

    注:本博文为本人阅读论文、文章后的原创笔记,未经授权不允许任何转载或商用行为,否则一经发现本人保留追责权利。有问题可留言联系,欢迎指摘批评,共同进步!!! 假设矩阵 A mathbf{A} A 是一个 M × N M times N M × N 大小的矩阵。对其进行奇异值分解后可以得到: A

    2024年02月02日
    阅读 42
  • Python矩阵LU分解

    scipy.linalg 中提供了一系列矩阵分解函数,其中最基础的肯定是LU分解。 LU分解,即使得矩阵 A A A 分解为 L U LU LU ,其中 L L L 为下三角阵, U U U 为上三角阵。对于这两种矩阵, scipy.linalg 中提供了 tril, triu ,可以将第 k k k 条对角线下面或上面的所有元素置零,即可以此获取L矩

    2024年02月08日
    阅读 34
  • 机器学习实战:Python基于SVD奇异值分解进行矩阵分解(八)

    1.1 奇异值分解 奇异值分解( Singular Value Decomposition,SVD )是一种重要的矩阵分解技术,它可以将一个矩阵分解为三个矩阵的乘积,分别为左奇异矩阵、奇异值矩阵和右奇异矩阵。SVD 的原理可以描述如下: 对于任意 m × n m times n m × n 的矩阵 A A A ,它的 SVD 分解为: A = U $

    2024年02月02日
    阅读 58
  • 矩阵理论| 基础:线性子空间(非平凡子空间)、空间分解、直和分解

    前置:线性代数学习笔记3-5:秩1矩阵和矩阵作为“向量”构成的空间 空间 V mathbf V V 有子空间 V 1 mathbf V_1 V 1 ​ (一组基为 α 1 , α 2 , . . . , α k alpha_1,alpha_2,...,alpha_k α 1 ​ , α 2 ​ , ... , α k ​ )和子空间 V 2 mathbf V_2 V 2 ​ (一组基为 β 1 , β 2 , . . . , β l beta_1,beta_2,

    2024年02月09日
    阅读 54
  • 对称矩阵的三对角分解(Lanzos分解算法)-MINRES算法预热

    这篇博客看完以后接着看下一篇博客添加链接描述专门介绍MINRES算法实现就容易了 首先介绍Lanczos分解,Lanzos把对称矩阵转换为一个三对角对称矩阵。考虑三对角对称矩阵如下,考虑正交分解 T = Q T A Q T = Q^T A Q T = Q T A Q T = ( α 1 β 1 0 ⋯ 0 0 β 1 α 2 β 2 0 ⋯ 0 0 β 2 α 3 β 3 ⋯ 0

    2024年02月03日
    阅读 246
  • 矩阵篇(五)-- 特征值分解(EVD)和奇异值分解(SVD)

            设 A n × n A_{n times n} A n × n ​ 有 n n n 个线性无关的特征向量 x 1 , … , x n boldsymbol{x}_{1}, ldots, boldsymbol{x}_{n} x 1 ​ , … , x n ​ ,对应特征值分别为 λ 1 , … , λ n lambda_{1}, ldots, lambda_{n} λ 1 ​ , … , λ n ​ A [ x 1 ⋯ x n ] = [ λ 1 x 1 ⋯ λ n x n ] Aleft[begin{array}{lll

    2024年02月08日
    阅读 51
  • 【矩阵分析】线性空间、λ矩阵、内积空间、Hermite矩阵、矩阵分解、矩阵范数、矩阵函数

    单纯矩阵 :A可对角化⇔①A可对角化;⇔②n个线性无关的特征向量; ⇔③每个特征值的几何重复度等于代数重复度;⇔④特征值λi对应的pi = n - rank(λiE - A)。 等价矩阵 :A(λ)等价于B(λ)⇔① 任意k阶行列式因子相同Dk(λ);⇔②有相同的不变因子dk(λ);⇔③相同的初等因子,且

    2024年01月30日
    阅读 66
  • 运用谱分解定理反求实对称矩阵

    设三阶 实对称矩阵 A A A ,若矩阵 A A A 的特征值为 λ 1 , λ 2 , λ 3 lambda_1,lambda_2,lambda_3 λ 1 ​ , λ 2 ​ , λ 3 ​ ,对应的 单位化 特征向量分别为 α 1 , α 2 , α 3 alpha_1,alpha_2,alpha_3 α 1 ​ , α 2 ​ , α 3 ​ 且 两两正交 ,则 A = λ 1 α 1 α 1 T + λ 2 α 2 α 2 T + λ 3 α 3 α 3 T A = lam

    2024年02月11日
    阅读 28
  • 第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解

    玩转线性代数(19)初等矩阵与初等变换的相关应用的笔记,例见原文 已知: A r ∼ F A^r sim F A r ∼ F ,求可逆阵 P P P ,使 P A = F PA = F P A = F ( F F F 为 A A A 的行最简形) 方法:利用初等行变换,将矩阵A左边所乘初等矩阵相乘,从而得到可逆矩阵P. 步骤: (1)对矩阵A进行l次初等

    2024年02月13日
    阅读 45
  • 【国科大——矩阵分析与应用】LU分解

    LU分解是旨在将某个矩阵表示为两个或多个矩阵的乘积。 LU分解是将矩阵表示为 A A A = L L L U U U ,其中 L L L 矩阵 代表 Lower Triangular(下三角矩阵) , U U U 矩阵 代表 Upper Triangular(上三角矩阵) 。形象一点就相当于写为 A = ◣ ∗ ◥ A=◣*◥ A = ◣ ∗ ◥ 。 1. 求解U矩阵 先求U矩

    2024年02月07日
    阅读 40
  • 详解矩阵的三角分解A=LU

    目录 一. 求解Ax=b 二. 上三角矩阵分解 三. 下三角矩阵分解 四. 矩阵的三角分解 举例1:矩阵三角分解 举例2:三角分解的限制 举例3:主元和乘法因子均为1 举例4:U为单位阵 小结 我们知道高斯消元法可以对应矩阵的基础变换。先来看我们比较熟悉的Ax=b模型,如下: 解这个方

    2024年01月30日
    阅读 44
  • 高等代数复习:矩阵的满秩分解

    本篇文章适合个人复习翻阅,不建议新手入门使用 定义:矩阵的左逆、右逆 设 A A A 是 m × n mtimes n m × n 矩阵 若 r ( A ) = n r(A)=n r ( A ) = n ,即 A A A 列满秩,则存在秩为 n n n 的 n × m ntimes m n × m 行满秩矩阵 B B B ,使得 B A = I n BA=I_n B A = I n ​ ,矩阵 B B B 称为 A A A 的左逆 若

    2024年04月13日
    阅读 31
  • Python实现矩阵奇异值分解(SVD)

    Python实现矩阵奇异值分解(SVD) 矩阵奇异值分解(Singular Value Decomposition, SVD)是一种重要的矩阵分解方法,可以将一个矩阵分解成三个矩阵的乘积,即 A = U Σ V T A=USigma V^{T} A = U Σ

    2024年02月10日
    阅读 45
  • 最优化方法(三)——矩阵QR分解

    1.熟练掌握 QR 分解 Gram–Schmidt方法; 2.掌握 Householder 方 法 ; 3. 能够判断 矩阵是否可逆 ,并 求出其逆矩阵 。 读取附件 MatrixA.mat 文件中的 矩阵 A , 利用 Gram–Schmidt(GS) 算法对A进行QR分解 。 (1)   验证GS是否 能稳定 进行QR分解矩阵A ,其 Q矩阵 是否正交? (2) 实现 Householder

    2024年01月30日
    阅读 37
  • 半正定Toeplitz矩阵的范德蒙德分解

    Toeplitz矩阵 的 定义 :Matrices whose entries are constant along each diagonal are called Toeplitz matrices . 形如 T = [ r 0 r 1 r 2 r 3 r − 1 r 0 r 1 r 2 r − 2 r − 1 r 0 r 1 r − 3 r − 2 r − 1 r 0 ] (1) boldsymbol{T}=left[ begin{matrix} r_0 r_1 r_2 r_3\\\\ r_{-1} r_0 r_1 r_2\\\\ r_{-2} r_{-1} r_0 r_1\\\\ r_{-3} r_{-2} r_{-1} r_0\\\\ end{matri

    2024年01月30日
    阅读 82
  • 矩阵分解(Matrix-Factorization)无门槛

    本章主要介绍矩阵分解常用的三种方法,分别为: 1 ◯ textcircled{1} 1 ◯ 特征值分解 2 ◯ textcircled{2} 2 ◯ 奇异值分解 3 ◯ textcircled{3} 3 ◯ Funk-SVD 矩阵分解原理: textbf{large 矩阵分解原理:} 矩阵分解原理:   矩阵分解算法将 m × n mtimes n m × n 维的矩阵 R R R 分解为 m ×

    2024年01月31日
    阅读 54
  • 最优化方法实验三--矩阵QR分解

    1.熟练掌握 QR 分解 Gram–Schmidt方法; 2.掌握 Householder 方 法 ; 3. 能够判断 矩阵是否可逆 ,并 求出其逆矩阵 。 1 .1向量投影 向量的投影包含了两层意思:①正交关系:矢量与投影的差称为误差,误差和投影正交;②最短距离:投影空间中所有矢量中,与原矢量距离最近的,

    2024年02月22日
    阅读 44