-
探索大型语言模型的安全风险
本文将深入探讨大型语言模型的安全风险,并提供相应的解决方案,帮助企业在保障安全的前提下充分利用大型语言模型的潜力。
-
《大型语言模型自然语言生成评估》综述
在快速发展的自然语言生成(NLG)评估领域中,引入大型语言模型(LLMs)为评估生成内容质量开辟了新途径,例如,连贯性、创造力和上下文相关性。本综述旨在提供一个关于利用LLMs进行NLG评估的全面概览,这是一个缺乏系统分析的新兴领域。 我们提出了一个连贯的分类体
-
大型语言模型的推理演算
作者 |kipply 翻译|杨婷、徐佳渝、贾川 本文详细阐述了大型语言模型推理性能的几个基本原理,不含任何实验数据或复杂的数学公式,旨在加深读者对相关原理的理解。此外,作者还提出了一种极其简单的推理时延模型,该模型与实证结果拟合度高,可更好地预测和解
-
怎么建立大型语言模型
建立大型语言模型通常涉及以下主要步骤: 数据收集:收集大规模的文本数据作为模型的训练数据。可以从各种来源获取数据,如互联网、书籍、新闻文章等。数据的质量和多样性对于模型的性能至关重要。 数据预处理:对收集到的数据进行预处理和清洗,以确保数据的质
-
06.构建大型语言模型步骤
在本章中,我们为理解LLMs奠定了基础。在本书的其余部分,我们将从头开始编写一个代码。我们将以 GPT 背后的基本思想为蓝图,分三个阶段解决这个问题,如图 1.9 所示。 图 1.9 本书中介绍的构建 LLMs 阶段包括实现 LLM 架构和数据准备过程、预训练以创建基础模型,以及微调
-
浅谈大型语言模型
大型语言模型(Large Language Models,LLMs)是一类强大的人工智能模型,具有出色的自然语言处理能力。它们在许多任务中表现出色,如机器翻译、文本摘要、对话生成和情感分析等。下面我们将介绍大型语言模型的训练和生成过程,以及它们在实际应用中的重要性。 Large Lang
-
多模态大型语言模型综述
Authors: Davide Caffagni ; Federico Cocchi ; Luca Barsellotti ; Nicholas Moratelli ; Sara Sarto ; Lorenzo Baraldi ; Lorenzo Baraldi ; Marcella Cornia ; Rita Cucchiara Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are bei
-
大语言模型(LLM)综述(五):使用大型语言模型的主要方法
随着人工智能和机器学习领域的迅速发展,语言模型已经从简单的词袋模型(Bag-of-Words)和N-gram模型演变为更为复杂和强大的神经网络模型。在这一进程中,大型语言模型(LLM)尤为引人注目,它们不仅在自然语言处理(NLP)任务中表现出色,而且在各种跨领域应用中也展示
-
Llama大型语言模型原理详解
Llama大型语言模型是一种基于深度学习的自然语言处理模型,它在文本生成、问答、摘要等多种NLP任务中展现出强大的性能。本文将详细解析Llama模型的原理,包括其结构、训练过程以及工作机制,帮助读者深入理解这一先进的模型。 一、模型结构 Llama模型采用了一种基于T
-
如何训练自己的大型语言模型
如何使用 Databricks、Hugging Face 和 MosaicML 训练大型语言模型 (LLM) 大型语言模型,如 OpenAI 的 GPT-4 或谷歌的 PaLM,已经席卷了人工智能世界。然而,大多数公司目前没有能力训练这些模型,并且完全依赖少数大型科技公司作为技术提供者。 在 Replit,我们大量投资于从头开始训练
-
【译】大型语言模型的直观解释
原作:史蒂夫·纽曼 引子:我没有深入研究数学,而是解释了“为什么”它们被构建为“预测下一个单词”引擎,并提出了为什么它们会出现概念性错误的理论。 有很多文章解释了 ChatGPT 等大型语言模型 (LLMs) 的工作原理。然而,他们往往会深入研究那些与大多数用户无关
-
大型语言模型 (LLM)全解读
大型语言模型 是 一种深度学习算法 ,可以 执行各种自然语言处理 (NLP) 任务 。 大型语言模型底层 使用多个转换器模型 , 底层转换器是一组神经网络 。 大型语言模型是 使用海量数据集 进行训练的超大型深度学习模型。 这也是它们能够识别、翻译、预测或生成文本或其他
-
如何评估大型语言模型(LLM)?
编者按:近期几乎每隔一段时间,就有新的大语言模型发布,但是当下仍然没有一个通用的标准来评估这些大型语言模型的质量,我们急需一个可靠的、综合的LLM评估框架。 本文说明了为什么我们需要一个全面的大模型评估框架,并介绍了市面上这些现有的评估框架,同时指
-
选择大型语言模型自定义技术
推荐:使用 NSDT场景编辑器 助你快速搭建可二次编辑器的3D应用场景 企业需要自定义模型来根据其特定用例和领域知识定制语言处理功能。自定义LLM使企业能够在特定的行业或组织环境中更高效,更准确地生成和理解文本。 自定义模型使企业能够创建符合其品牌声音的个
-
大型语言模型,第 1 部分:BERT
2017是机器学习中具有历史意义的一年,当 变形金刚 模型首次出现在现场时。它在许多基准测试上都表现出色,并且适用于数据科学中的许多问题。由于其高效的架构,后来开发了许多其他基于变压器的模型,这些模型更专注于特定任务。 其中一个模