大数据被应用较多的领域有哪些?疫情期间大数据技术对于疫情的防控发挥了巨大的作用,抗疫期间多家互联网企业纷纷加强大数据在疫情防控中的应用。小到社区大到部委相关部门都将大数据作为不可或缺的防疫工具,生活中很多方面涉及到大数据由此可见尤为重要。
常见的大数据应用领域:
1、理解客户满足客户服务需求
大数据应用目前在这领域是最广为人知的。通过大数据分析更好的了解客户以及用户的爱好和行为。企业非常喜欢通过在线客服系统搜集用户社交方面的数据、浏览器的日志、各类文本和传感器的数据,从而更加全面的了解客户,建立出数据模型进行预测。
2、业务流程优化
大数据可以帮助业务流程的优化通过社交媒体数据、业务数据、网络搜索数据等等挖掘出有价值的数据,目前大数据的应用最广泛的就是物联网和人力资源行业;例如物联网行业,优化供应链以及配送路线根据地理定位和无线电频率的识别追踪货物和送货车,利用实时交通路线数据来优化配送路线;例如人力资源行业,有海量的候选人信息及企业信息需要通过大数据的分析来进行优化快速的匹配候选人及企业,识别并筛选重复、无效简历,让人、岗适配。
3、大数据改善日常生活
大数据不只是应用于企业和政府,同样也适用于生活当中的每个人。可以利用穿戴的装备(如智能手表、智能手环、智能脚环)生成最新的数据,根据我们的心率、压力以及作息数据来追踪健康情况;而且还可以利用大数据分析来寻找属于我们的爱情,大多数时候交友网站就是大数据应用工具来帮助有需要的人匹配合适的对象。
4、提高医疗研发质量
大数据分析应用的计算能力可以让我们能够在几分钟内就可以解码整个DNA。并且让我们可以制定出最新的治疗方案。同时可以更好的去理解和预测疾病。就好像人们戴上智能手表等可以产生的数据一样,大数据同样可以帮助病人对于病情进行更好的治疗。大数据技术目前已经在医院应用监视早产婴儿和患病婴儿的情况,通过记录和分析婴儿的心跳,医生针对婴儿的身体可能会出现不适症状做出预测可以帮助医生更好的救助婴儿。
5、提高体育成绩
现在运动员在训练的时候都会应用大数据分析技术。如用于球类运动的IBM SlamTracker工具,使用视频分析来追踪及分析足球或棒球比赛中每个球员的表现,而运动器材中的传感器技术可以通过比赛实时数据分析,进而改进运动器材及场地设施;很多精英运动队还会追踪比赛环境外运动员的活动-通过使用智能技术来追踪其营养状况以及睡眠质量改善餐食及训练方式让运动员达到合适的竞技状态。
6、优化性能
大数据分析还可以让机器设备在应用上更加智能化和自主化。例如大数据工具被谷歌公司利用研发谷歌自动驾驶汽车,丰田的普瑞维亚就配有相机、GPS以及传感器,以期实现无人安全驾驶;另外大数据工具还可以应用优化智能电话。
7、保障城市安全
大数据现在已经广泛应用到城市安全和执法的过程中。如目前与我们息息相关防疫用的健康码、行程卡,企业则应用大数据技术进行防御网络攻击,警察应用大数据工具抓捕罪犯,银行应用大数据工具来防止欺诈性交易等。
8、改善城市交通
大数据还被应用改善我们日常生活的城市。例如基于城市实时交通信息、利用社交网络和天气数据来优化最新的交通情况,目前大部分一二线城市都在进行大数据的试点。
9、金融交易
大数据在金融行业主要是应用金融交易。高频交易(HFT)是大数据应用比较多的领域。其中大数据算法应用于交易决定。现在很多股权的交易都是利用大数据算法进行,这些算法现在越来越多的考虑了社交媒体和网站新闻来决定在未来几秒内是买进还是卖出。
猎聘大数据研究院发布了《2022未来人才就业趋势报告》
从排名来看,2022年1-4月各行业中高端人才平均年薪来看,人工智能行业中高端人才平均年薪最高,为31.04万元;金融行业中高端人才以27.69万元的平均年薪位居第二;通信、大数据行业中高端人才平均年薪分别为27.51万元、25.23万元,位列第三、第四;IT/互联网行业中高端人才平均年薪23.02万元,位列第七。
图表来源:《2022未来人才就业趋势报告》
如果你觉得很高,被平均了这样?那么打开Boss直聘,搜大数据工程师:
我们来做下数据分析:
薪资那一列都有一个最低薪资和最高薪资,我们通过不同城市来对比分析一下,发现北京的工资水平最高,最低为22k,最高为38k。
工作年限也是一个制约工资水平的很大因素,从图中可以看出,即使是刚毕业,也能达到一个11-20k的薪资范围。
而学历要求来说,大部分为本科,其次为大专和硕士,其他比较少,以至于在图中并没有显示出来。
企业对不同岗位的要求以3-5年的居多,企业当然是需要有一定工作经验的员工,但是在实际招聘中,如果你有项目经验,且理论知识没问题,企业也会放宽条件。
分析不同行业, 我们发现,大数据岗位需求分布在各行各业,主要还是在计算机软件和互联网最多,也有可能是这个招聘软件决定的,毕竟Boss直聘还是以互联网行业为主。
来看看哪些公司在招聘大数据相关岗位,从这个超过15的数量来看,华为,腾讯,阿里,字节,这些大厂对这个岗位的需求量还是很大的。
那么这些岗位都需要什么技能呢?Spark,Hadoop,数据仓库,Python,SQL,Mapreduce,Hbase等等
根据国内的发展形势,大数据未来的发展前景会非常好。自 2018 年企业纷纷开始数字化转型,一二线城市对大数据领域的人才需求非常强烈,未来几年,三四线城市的人才需求也会大增。
在大数据领域,国内发展的比较晚,从 2016 年开始,仅有 200 多所大学开设了大数据相关的专业,也就是说 2020 年第一批毕业生才刚刚步入社会,我国市场环境处于急需大数据人才但人才不足的阶段,所以未来大数据领域会有很多的就业机遇。
薪资高、缺口大,自然成为职场人的“薪”选择!
任何学习过程都需要一个科学合理的学习路线,才能够有条不紊的完成我们的学习目标。Python+大数据所需学习的内容纷繁复杂,难度较大,为大家整理了一个全面的Python+大数据学习路线图,帮大家理清思路,攻破难关!
Python+大数据学习路线图详细介绍
第一阶段 大数据开发入门
学前导读:从传统关系型数据库入手,掌握数据迁移工具、BI数据可视化工具、SQL,对后续学习打下坚实基础。
1.大数据数据开发基础MySQL8.0从入门到精通
MySQL是整个IT基础课程,SQL贯穿整个IT人生,俗话说,SQL写的好,工作随便找。本课程从零到高阶全面讲解MySQL8.0,学习本课程之后可以具备基本开发所需的SQL水平。
2022最新MySQL知识精讲+mysql实战案例_零基础mysql数据库入门到高级全套教程
第二阶段 大数据核心基础
学前导读:学习Linux、Hadoop、Hive,掌握大数据基础技术。
2022版大数据Hadoop入门教程
Hadoop离线是大数据生态圈的核心与基石,是整个大数据开发的入门,是为后期的Spark、Flink打下坚实基础的课程。掌握课程三部分内容:Linux、Hadoop、Hive,就可以独立的基于数据仓库实现离线数据分析的可视化报表开发。
2022最新大数据Hadoop入门视频教程,最适合零基础自学的大数据Hadoop教程
第三阶段 千亿级数仓技术
学前导读:本阶段课程以真实项目为驱动,学习离线数仓技术。
数据离线数据仓库,企业级在线教育项目实战(Hive数仓项目完整流程)
本课程会、建立集团数据仓库,统一集团数据中心,把分散的业务数据集中存储和处理 ;目从需求调研、设计、版本控制、研发、测试到落地上线,涵盖了项目的完整工序 ;掘分析海量用户行为数据,定制多维数据集合,形成数据集市,供各个场景主题使用。
大数据项目实战教程_大数据企业级离线数据仓库,在线教育项目实战(Hive数仓项目完整流程)
第四阶段 PB内存计算
学前导读:Spark官方已经在自己首页中将Python作为第一语言,在3.2版本的更新中,高亮提示内置捆绑Pandas;课程完全顺应技术社区和招聘岗位需求的趋势,全网首家加入Python on Spark的内容。
1.python入门到精通(19天全)
python基础学习课程,从搭建环境。判断语句,再到基础的数据类型,之后对函数进行学习掌握,熟悉文件操作,初步构建面向对象的编程思想,最后以一个案例带领同学进入python的编程殿堂。
全套Python教程_Python基础入门视频教程,零基础小白自学Python必备教程
2.python编程进阶从零到搭建网站
学完本课程会掌握Python高级语法、多任务编程以及网络编程。
Python高级语法进阶教程_python多任务及网络编程,从零搭建网站全套教程
3.spark3.2从基础到精通
Spark是大数据体系的明星产品,是一款高性能的分布式内存迭代计算框架,可以处理海量规模的数据。本课程基于Python语言学习Spark3.2开发,课程的讲解注重理论联系实际,高效快捷,深入浅出,让初学者也能快速掌握。让有经验的工程师也能有所收获。
Spark全套视频教程,大数据spark3.2从基础到精通,全网首套基于Python语言的spark教程
4.大数据Hive+Spark离线数仓工业项目实战
通过大数据技术架构,解决工业物联网制造行业的数据存储和分析、可视化、个性化推荐问题。一站制造项目主要基于Hive数仓分层来存储各个业务指标数据,基于sparkSQL做数据分析。核心业务涉及运营商、呼叫中心、工单、油站、仓储物料。文章来源:https://www.toymoban.com/news/detail-400104.html
全网首次披露大数据Spark离线数仓工业项目实战,Hive+Spark构建企业级大数据平台文章来源地址https://www.toymoban.com/news/detail-400104.html
到了这里,关于大数据都应用在哪些领域?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!