深度学习中的优化算法之RMSProp

这篇具有很好参考价值的文章主要介绍了深度学习中的优化算法之RMSProp。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

      之前在https://blog.csdn.net/fengbingchun/article/details/124766283 中介绍过深度学习中的优化算法AdaGrad,这里介绍下深度学习的另一种优化算法RMSProp。

      RMSProp全称为Root Mean Square Propagation,是一种未发表的自适应学习率方法,由Geoff Hinton提出,是梯度下降优化算法的扩展。如下图所示,截图来自:https://arxiv.org/pdf/1609.04747.pdf

     深度学习中的优化算法之RMSProp

       AdaGrad的一个限制是,它可能会在搜索结束时导致每个参数的步长(学习率)非常小,这可能会大大减慢搜索进度,并且可能意味着无法找到最优值。RMSProp和Adadelta都是在同一时间独立开发的,可认为是AdaGrad的扩展,都是为了解决AdaGrad急剧下降的学习率问题。

      RMSProp采用了指数加权移动平均(exponentially weighted moving average)。

      RMSProp比AdaGrad只多了一个超参数,其作用类似于动量(momentum),其值通常置为0.9

      RMSProp旨在加速优化过程,例如减少达到最优值所需的迭代次数,或提高优化算法的能力,例如获得更好的最终结果。

      以下是与AdaGrad不同的代码片段:

      1.在原有枚举类Optimizaiton的基础上新增RMSProp:

enum class Optimization {
	BGD, // Batch Gradient Descent
	SGD, // Stochastic Gradient Descent
	MBGD, // Mini-batch Gradient Descent
	SGD_Momentum, // SGD with Momentum
	AdaGrad, // Adaptive Gradient
	RMSProp // Root Mean Square Propagation
};

      2.calculate_gradient_descent函数:RMSProp与AdaGrad只有g[j]的计算不同

void LogisticRegression2::calculate_gradient_descent(int start, int end)
{
	switch (optim_) {
		case Optimization::RMSProp: {
			int len = end - start;
			std::vector<float> g(feature_length_, 0.);
			std::vector<float> z(len, 0), dz(len, 0);
			for (int i = start, x = 0; i < end; ++i, ++x) {
				z[x] = calculate_z(data_->samples[random_shuffle_[i]]);
				dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]);

				for (int j = 0; j < feature_length_; ++j) {
					float dw = data_->samples[random_shuffle_[i]][j] * dz[x];
					g[j] = mu_ * g[j] + (1. - mu_) * (dw * dw);
					w_[j] = w_[j] - alpha_ * dw / (std::sqrt(g[j]) + eps_);
				}

				b_ -= (alpha_ * dz[x]);
			}
		}
			break;
		case Optimization::AdaGrad: {
			int len = end - start;
			std::vector<float> g(feature_length_, 0.);
			std::vector<float> z(len, 0), dz(len, 0);
			for (int i = start, x = 0; i < end; ++i, ++x) {
				z[x] = calculate_z(data_->samples[random_shuffle_[i]]);
				dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]);

				for (int j = 0; j < feature_length_; ++j) {
					float dw = data_->samples[random_shuffle_[i]][j] * dz[x];
					g[j] += dw * dw;
					w_[j] = w_[j] - alpha_ * dw / (std::sqrt(g[j]) + eps_);
				}

				b_ -= (alpha_ * dz[x]);
			}
		}
			break;
		case Optimization::SGD_Momentum: {
			int len = end - start;
			std::vector<float> change(feature_length_, 0.);
			std::vector<float> z(len, 0), dz(len, 0);
			for (int i = start, x = 0; i < end; ++i, ++x) {
				z[x] = calculate_z(data_->samples[random_shuffle_[i]]);
				dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]);

				for (int j = 0; j < feature_length_; ++j) {
					float new_change = mu_ * change[j] - alpha_ * (data_->samples[random_shuffle_[i]][j] * dz[x]);
					w_[j] += new_change;
					change[j] = new_change;
				}

				b_ -= (alpha_ * dz[x]);
			}
		}
			break;
		case Optimization::SGD:
		case Optimization::MBGD: {
			int len = end - start;
			std::vector<float> z(len, 0), dz(len, 0);
			for (int i = start, x = 0; i < end; ++i, ++x) {
				z[x] = calculate_z(data_->samples[random_shuffle_[i]]);
				dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]);

				for (int j = 0; j < feature_length_; ++j) {
					w_[j] = w_[j] - alpha_ * (data_->samples[random_shuffle_[i]][j] * dz[x]);
				}

				b_ -= (alpha_ * dz[x]);
			}
		}
			break;
		case Optimization::BGD:
		default: // BGD
			std::vector<float> z(m_, 0), dz(m_, 0);
			float db = 0.;
			std::vector<float> dw(feature_length_, 0.);
			for (int i = 0; i < m_; ++i) {
				z[i] = calculate_z(data_->samples[i]);
				o_[i] = calculate_activation_function(z[i]);
				dz[i] = calculate_loss_function_derivative(o_[i], data_->labels[i]);

				for (int j = 0; j < feature_length_; ++j) {
					dw[j] += data_->samples[i][j] * dz[i]; // dw(i)+=x(i)(j)*dz(i)
				}
				db += dz[i]; // db+=dz(i)
			}

			for (int j = 0; j < feature_length_; ++j) {
				dw[j] /= m_;
				w_[j] -= alpha_ * dw[j];
			}

			b_ -= alpha_*(db/m_);
	}
}

      执行结果如下图所示:测试函数为test_logistic_regression2_gradient_descent,多次执行每种配置,最终结果都相同。图像集使用MNIST,其中训练图像总共10000张,0和1各5000张,均来自于训练集;预测图像总共1800张,0和1各900张,均来自于测试集。在它们学习率为0.01及其它配置参数相同的情况下,AdaGrad耗时为17秒,RMSProp耗时为33秒;它们的识别率均为100%。当学习率调整为0.001时,AdaGrad耗时为26秒,RMSProp耗时为19秒;它们的识别率均为100%。

深度学习中的优化算法之RMSProp

      GitHub: https://github.com/fengbingchun/NN_Test文章来源地址https://www.toymoban.com/news/detail-400365.html

到了这里,关于深度学习中的优化算法之RMSProp的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习】P17 梯度下降 与 梯度下降优化算法(BGD 等 与 Adam Optimizer、AdaGrad、RMSProp)

    梯度下降(Gradient Descent)是一种常用的优化算法,用于求解目标函数的最小值。(在机器学习应用梯度下降中,主要目标是为了最小化损失函数); 其基本思想是通过不断迭代调整参数,使得目标函数的值不断逼近最小值。(机器学习中是为了最小化损失函数,即使得预测

    2023年04月16日
    浏览(47)
  • SGD算法的优化特性及其在深度学习中的应用(OptimizationPropertiesandApplicat

    作者:禅与计算机程序设计艺术 SGD(Stochastic Gradient Descent)算法作为深度学习中最常用的优化算法之一,具有较好的全局收敛速度和稳定性。然而,在某些场景下,SGD算法的训练效率和泛化能力仍有待提高。本文将探讨SGD算法的优化特性及其在深度学习中的应用。 引言 1.1

    2024年02月09日
    浏览(38)
  • 《动手学深度学习》优化算法学习&习题

    小批量随机梯度下降,通过平均梯度来减小方差 基础 泄露平均法:用来取代梯度的计算 β beta β 这个参数控制了取多久时间的平均值 上述推理构成了”加速”梯度方法的基础,例如具有动量的梯度。 在优化问题条件不佳的情况下(例如,有些方向的进展比其他方向慢得多

    2024年02月13日
    浏览(33)
  • 深度学习优化算法相关文章

    综述性文章 一个框架看懂优化算法之异同 SGD/AdaGrad/Adam 从 SGD 到 Adam —— 深度学习优化算法概览(一)

    2024年02月10日
    浏览(35)
  • 深度学习优化算法

    优化算法 要训练一个好的 CNN 模型,通常需要很多训练数据,尤其是模型结构比较复杂的时候, 比如 ImageNet 数据集上训练的模型。虽然深度学习在 ImageNet 上取得了巨大成功,但是一个 现实的问题是,很多应用的训练集是较小的,如何在这种情况下应用深度学习呢?有三种方

    2024年02月19日
    浏览(40)
  • 手撕深度学习中的优化器

    深度学习中的优化算法采用的原理是梯度下降法,选取适当的初值 params ,不断迭代,进行目标函数的极小化,直到收敛。由于负梯度方向时使函数值下降最快的方向,在迭代的每一步,以负梯度方向更新 params 的值,从而达到减少函数值的目的。 Gradient descent in deep learning

    2023年04月09日
    浏览(35)
  • 机器学习&&深度学习——随机梯度下降算法(及其优化)

    在我们没有办法得到解析解的时候,我们可以用过梯度下降来进行优化,这种方法几乎可以所有深度学习模型。 关于优化的东西,我自己曾经研究过智能排班算法和优化,所以关于如何找局部最小值,以及如何跳出局部最小值的一些基本思想是有感触的,随机梯度算法和其优

    2024年02月15日
    浏览(43)
  • 深度学习中的计算图和图优化

    深度学习中的计算图是一种用于描述和组织神经网络模型运算的图结构。计算图由节点(nodes)和边(edges)组成,节点表示操作(例如加法、乘法、激活函数等),边表示数据流向(即输入和输出)。通过计算图,我们可以清晰地了解模型中各种操作的依赖关系和计算流程,

    2024年02月16日
    浏览(42)
  • 计算机视觉(三)未有深度学习之前

    把图像划分成若干互不相交的区域。 经典的数字图像分割算法一般是基于灰度值的两个基本特征之一:不连续性和相似性。 基于阈值:基于图像灰度特征计算一个或多个灰度阈值。将灰度值与阈值比较,最后将比较结果分到合适的类别中。 大津法 基于边缘:边界线上连续的

    2024年02月15日
    浏览(48)
  • MATLAB算法实战应用案例精讲-【深度学习】基于优化的元学习

    目录 元学习 1 元学习概念 2 元学习含义 3 元学习单位 4 基学习器和元学习器

    2024年02月11日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包