微积分——求导数的链式法则

这篇具有很好参考价值的文章主要介绍了微积分——求导数的链式法则。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

链式法则(Chain Rule)是微积分最强大的法则之一。这个法则处理的是复合函数(Composite Functions)的导数问题。

复合函数: 以另一种方式将两个函数组合起来的函数。正式定义:

分别为两个函数,函数(fg)(x) = (g(x))称为的复合函数。复合函数 f的定义域为所有的定义域中使得g(x) 在的定义域中的所有的集合。即,复合函数的定义域中的自变量,首先必须满足是位于的定义域中,同时,这个自变量也必须满足使其函数的值位于的定义域中,满足这两个限制的所有的值,构成复合函数的定义域。

当然,复合函数还可以继续复合,组成更复杂的函数。也就是说,复合函数是两套以上的映射法则。一般来讲,f的复合函数,与的复合函数,是不一样的复合函数。

例如,求(x) = 2x– 3 和 微积分——求导数的链式法则 求复合函数  fg gf

(1) fg (读作“与 的复合函数”)

微积分——求导数的链式法则

(2) gf (读作“与 的复合函数”)

微积分——求导数的链式法则

链式法则定理:假如 y = (u)是一个的可微函数,u = (x)是一个的可微函数,则 y = (g(x)) 是一个的可微函数,并且

 (即的导数,等于的导数,乘以的导数。) 

或者,写成等价形式

 

(即,先对第一个函数规则求导数,再对第二个函数规则求导数;链式法则的核心在于识别出复合函数的复合规则,找出复合前的两个函数规则;这种复合可能有多层,从最外层开始,从外向内层层解剖。)

例如,求函数   的导数。

从函数定义可以看出,这是一个复合函数,有两套函数规则。 这是一个函数规则,令其为  ;外层又有一个函数规则,立方规则,因此写成  。

因此,

例如,求   的导数。

这个复合函数有3层复合,即,立方这一层映射,三角函数这一层映射,最里层直线函数映射。

 (先求最外层的导数,立方映射这一层)

 (求次外层的导数,三角函数映射这一层)

 (求最里层的导数,直线函数映射这一层)

参考资料:

<<calculus>> Ron Larson,The Pennsylvania State University The Behrend College
Bruce Edwards, University of Florida文章来源地址https://www.toymoban.com/news/detail-401379.html

到了这里,关于微积分——求导数的链式法则的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 图形学基础--深入浅出的微积分书籍 《普林斯顿微积分读本》和《托马斯微积分》

           话说程序员有三大浪漫,图形学,编译原理,操作系统,说到这里,可能搞深度学习的要跳出来反驳. 这三大浪漫正确与否其实并不重要,重要的是这种说法侧面反映了学习图形学的难度. 图形学之所以有难度,是因为它有一定的数学门槛. 一提到数学,大家脑海中肯

    2024年02月13日
    浏览(54)
  • 微积分物理题()

    在一个粗糙的平面上,有一个质量为 1 kg 1text{kg} 1 kg 的小木块,小木块的初速度为 0 0 0 ,小木块与平面的动摩擦因数 μ = 0.2 mu=0.2 μ = 0.2 。有一个拉力 F F F 拉动小木块从左往右移动,拉力 F F F 与时间 t t t 的关系为 F = 0.3 t 2 − 2.4 t + 5.6 F=0.3t^2-2.4t+5.6 F = 0.3 t 2 − 2.4 t + 5.6 。

    2024年02月15日
    浏览(44)
  • 微积分基本概念

    微分 函数的微分是指对 函数的局部变化的一种线性描述 。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。。对于函数 y = f ( x ) y = f(x) y = f ( x ) 的微分记作: d y = f ′ ( x ) d x d_y = f^{\\\'}(x)d_x d y ​ = f ′ ( x ) d x ​ 微分和导数的区别在于:

    2024年02月11日
    浏览(53)
  • 高等数学:微积分(下)

    导数说完了就可以说微分了。还是看图中过A点的切线,其与竖直虚线相交于C点。其中CD段的距离可以表示为 C D = k ⋅ Δ x CD = k cdot Delta x\\\\ C D = k ⋅ Δ x 这里的系数k是一个不为零的常数。原因很简单,假设这条切线与x轴的夹角为 θ theta θ (图中没有画出),那么根据三角函

    2024年02月12日
    浏览(56)
  • Matlab(数值微积分)

    目录 1.多项式微分与积分 1.1 微分 1.2 多项式微分 1.3 如何正确的使用Matlab? 1.3.1 Matlab表达多项式 1.3.2  polyval() 多项式求值  1.3.3 polyder()多项式微分 1.4 多项式积分 1.4.1 如何正确表达 1.4.2 polyint() 多项式积分 2.数值的微分与积分 2.1 数值微分  2.2 diff() 计算差值   2.3 误差的准确

    2024年02月09日
    浏览(35)
  • 微积分之八——级数整理

    几何级数(等比级数) ∑ n = 0 ∞ a q n = a + a q + a q 2 + ⋅ ⋅ ⋅ + a q n + ⋅ ⋅ ⋅ ( a ≠ 0 ) s n = a + a q + a q 2 + ⋅ ⋅ ⋅ + a q n − 1 = a ⋅ 1 − q n 1 − q { ∣ q ∣ 1 , 级 数 收 敛 ∣ q ∣ 1 , 级 数 发 散 q = 1 , S n = n a → ∞ 级 数 发 散 q = − 1 , S n = { a , n 为 奇 数 0 , n 为 偶 数 , 所

    2024年02月13日
    浏览(46)
  • MATLAB计算极限和微积分

    一.函数与极限 计算极限:lim(3*x^2/(2x+1)),x分别趋于0和1,代码如下: 结果分别为0和1: 1.计算双侧极限 计算极限:lim(3*x^2/(2x+1)),x分别趋于0和1,代码如下: 2.计算单侧极限 分别计算当x从左右两边趋向0时,1/x的极限值:  结果分别为负无穷和正无穷:  3.绘制极限图像 如下

    2024年02月19日
    浏览(44)
  • MATLAB 之 符号微积分计算

    微积分的数值计算方法只能求出以数值表示的近似解,而无法得到以函数形式表示的解析解。 在 MATLAB 中,可以通过符号运算获得微积分的解析解。 MATLAB 中求函数极限的函数是 limit ,可用来求函数在指定点的极限值和左右极限值。 对于极限值为没有定义的极限,MATLAB 给出

    2024年02月09日
    浏览(48)
  • 【Python · PyTorch】线性代数 & 微积分

    本文采用Python及PyTorch版本如下: Python:3.9.0 PyTorch:2.0.1+cpu 本文为博主自用知识点提纲,无过于具体介绍,详细内容请参考其他文章。 线性代数是数学的一个分支,它的研究对象是向量、向量空间(线性空间)、线性变换及有限维的线性方程组。线性代数已被广泛地应用于

    2024年02月08日
    浏览(49)
  • 在AI中无所不在的微积分

           微积分在人工智能(AI)领域扮演着至关重要的角色,以下是其主要作用: 优化算法:          •梯度下降法:微积分中的导数被用来计算损失函数相对于模型参数的梯度,这是许多机器学习和深度学习优化算法的核心。梯度指出了函数值增加最快的方向,通

    2024年04月12日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包