01. 数据准备
ElasticSearch 向 my_index 索引中索引了 12 条文档:
PUT /my_index/_doc/1
{
"title": "文雅酒店",
"content": "青岛",
"price": 556
}
PUT /my_index/_doc/2
{
"title": "金都嘉怡假日酒店",
"content": "北京",
"price": 337
}
PUT /my_index/_doc/3
{
"title": "金都欣欣酒店",
"content": "天津",
"price": 200
}
PUT /my_index/_doc/4
{
"title": "金都酒店",
"content": "上海",
"price": 300
}
PUT /my_index/_doc/5
{
"title": "自如酒店",
"content": "南京",
"price": 400
}
PUT /my_index/_doc/6
{
"title": "如家酒店",
"content": "杭州",
"price": 500
}
PUT /my_index/_doc/7
{
"title": "非常酒店",
"content": "合肥",
"price": 600
}
PUT /my_index/_doc/8
{
"title": "金都酒店",
"content": "淮北",
"price": 700
}
PUT /my_index/_doc/9
{
"title": "金都酒店",
"content": "淮南",
"price": 900
}
PUT /my_index/_doc/10
{
"title": "丽舍酒店",
"content": "阜阳",
"price": 1000
}
PUT /my_index/_doc/11
{
"title": "文轩酒店",
"content": "蚌埠",
"price": 1020
}
PUT /my_index/_doc/12
{
"title": "大理酒店",
"content": "长沙",
"price": 1100
}
02. ElasticSearch 如何查询所有文档?
ElasticSearch 查询所有文档
GET /my_index/_search
根据查询结果可以看出,集群中总共有12个文档,hits.total.value=12, 但是在 hits
数组中只有 10 个文档。如何才能看到其他的文档?
{
"took" : 688,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 12,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"title" : "金都嘉怡假日酒店",
"content" : "北京",
"price" : 337
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "3",
"_score" : 1.0,
"_source" : {
"title" : "金都欣欣酒店",
"content" : "天津",
"price" : 200
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"title" : "文雅酒店",
"content" : "青岛",
"price" : 556
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "4",
"_score" : 1.0,
"_source" : {
"title" : "金都酒店",
"content" : "上海",
"price" : 300
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "5",
"_score" : 1.0,
"_source" : {
"title" : "自如酒店",
"content" : "南京",
"price" : 400
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "6",
"_score" : 1.0,
"_source" : {
"title" : "如家酒店",
"content" : "杭州",
"price" : 500
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "7",
"_score" : 1.0,
"_source" : {
"title" : "非常酒店",
"content" : "合肥",
"price" : 600
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "8",
"_score" : 1.0,
"_source" : {
"title" : "金都酒店",
"content" : "淮北",
"price" : 700
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "9",
"_score" : 1.0,
"_source" : {
"title" : "金都酒店",
"content" : "淮南",
"price" : 900
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "10",
"_score" : 1.0,
"_source" : {
"title" : "丽舍酒店",
"content" : "阜阳",
"price" : 1000
}
}
]
}
}
03. ElasticSearch 如何指定搜索结果的条数?
Elasticsearch 接受 from
和 size
参数:
from:显示应该跳过的初始结果数量,默认是0
size:显示应该返回的结果数量,默认是10
from 和 size 参数的默认值分别为 0 和 10,因此如果不指定这两个参数,将返回前 10 条记录,这也是为什么集群中总共有12个文档,hits.total.value=12, 但是在 hits
数组中只有 10 个文档的原因。
如果我们想返回更多的结果数量,可以通过size参数来指定:
GET /my_index/_search
{
"size": 15
}
集群中总共有12条文档。size=15 会把集群中所有的文档返回:
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 12,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"title" : "金都嘉怡假日酒店",
"content" : "北京",
"price" : 337
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "3",
"_score" : 1.0,
"_source" : {
"title" : "金都欣欣酒店",
"content" : "天津",
"price" : 200
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"title" : "文雅酒店",
"content" : "青岛",
"price" : 556
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "4",
"_score" : 1.0,
"_source" : {
"title" : "金都酒店",
"content" : "上海",
"price" : 300
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "5",
"_score" : 1.0,
"_source" : {
"title" : "自如酒店",
"content" : "南京",
"price" : 400
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "6",
"_score" : 1.0,
"_source" : {
"title" : "如家酒店",
"content" : "杭州",
"price" : 500
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "7",
"_score" : 1.0,
"_source" : {
"title" : "非常酒店",
"content" : "合肥",
"price" : 600
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "8",
"_score" : 1.0,
"_source" : {
"title" : "金都酒店",
"content" : "淮北",
"price" : 700
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "9",
"_score" : 1.0,
"_source" : {
"title" : "金都酒店",
"content" : "淮南",
"price" : 900
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "10",
"_score" : 1.0,
"_source" : {
"title" : "丽舍酒店",
"content" : "阜阳",
"price" : 1000
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "11",
"_score" : 1.0,
"_source" : {
"title" : "文轩酒店",
"content" : "蚌埠",
"price" : 1020
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "12",
"_score" : 1.0,
"_source" : {
"title" : "大理酒店",
"content" : "长沙",
"price" : 1100
}
}
]
}
}
04. ElasticSearch 分页查询方式有哪些?
使用 from 和 size 参数来实现分页查询。
使用 scroll 查询来实现分页查询。
使用搜索后再次查询的方式来实现分页查询。
05. ElasticSearch 如何实现 from+size 分页查询?
在 ElasticSearch 中,可以使用 from 和 size 参数来进行分页搜索。 from 和 size 参数用来指定从哪个文档开始,返回多少个文档。具体命令如下:
GET /my_index/_search
{
"query": {
"match": {
"title": "酒店"
}
},
"from": 0, // 从第 1 条数据开始
"size": 3 // 返回 3 条数据
}
结果如下,总共有12条数据,从第1条数据开始,返回3条数据:
{
"took" : 19,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 12,
"relation" : "eq"
},
"max_score" : 0.075949445,
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "1",
"_score" : 0.075949445,
"_source" : {
"title" : "文雅酒店",
"content" : "青岛",
"price" : 556
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "4",
"_score" : 0.075949445,
"_source" : {
"title" : "金都酒店",
"content" : "上海",
"price" : 300
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "5",
"_score" : 0.075949445,
"_source" : {
"title" : "自如酒店",
"content" : "南京",
"price" : 400
}
}
]
}
}
在上面的命令中,我们使用 from 参数指定从哪个文档开始,使用 size 参数指定返回多少个文档。例如,当 from=0 且 size=10 时,返回的是第 1 到第 10 条数据。当 from=10 且 size=10 时,返回的是第 11 到第 20 条数据。
06. ElasticSearch 如何实现 searchAfter 分页查询?
Search After API 可以用于在 Elasticsearch 中处理大量数据。它允许您在不影响性能的情况下检索大量数据。使用 Search After API,您可以在多个请求之间保持查询上下文,并在每个请求中返回一定数量的结果。这样,您就可以逐步处理大量数据,而不必一次性将所有数据加载到内存中。
Search After API 从指定的某个数据后面开始读。这种方式不能随机跳转分页,只能一页一页地读取数据,而且必须用一个唯一且不重复的属性对查询数据进行排序。
POST /my_index/_search
{
"size": 3,
"query": {
"match": {
"title": "酒店"
}
},
"sort": [
{
"price": "asc"
}
],
"track_total_hits": true
}
以上代码表示从 my_index 索引中查询 title 包含 酒店的数据,每次返回 3 条数据,并按照 price 字段升序排序。查询结果中会返回一个 sort 值,用于在后续请求中使用。同时,设置 track_total_hits 参数为 true,表示计算总命中数。
查询文档的总命中数 hits.total.value 为12,返回3条数据:
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 12,
"relation" : "eq"
},
"max_score" : null,
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "3",
"_score" : null,
"_source" : {
"title" : "金都欣欣酒店",
"content" : "天津",
"price" : 200
},
"sort" : [
200
]
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "4",
"_score" : null,
"_source" : {
"title" : "金都酒店",
"content" : "上海",
"price" : 300
},
"sort" : [
300
]
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "2",
"_score" : null,
"_source" : {
"title" : "金都嘉怡假日酒店",
"content" : "北京",
"price" : 337
},
"sort" : [
337
]
}
]
}
}
接下来,可以使用 sort 值来获取下一页数据:
POST /my_index/_search
{
"size": 1000,
"query": {
"match": {
"title": "酒店"
}
},
"sort": [
{
"price": "asc"
}
],
"search_after": [337]
}
{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 12,
"relation" : "eq"
},
"max_score" : null,
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "5",
"_score" : null,
"_source" : {
"title" : "自如酒店",
"content" : "南京",
"price" : 400
},
"sort" : [
400
]
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "6",
"_score" : null,
"_source" : {
"title" : "如家酒店",
"content" : "杭州",
"price" : 500
},
"sort" : [
500
]
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "1",
"_score" : null,
"_source" : {
"title" : "文雅酒店",
"content" : "青岛",
"price" : 556
},
"sort" : [
556
]
}
]
}
}
07. ElasticSearch 如何实现 scroll 分页查询?
Scroll API 可以用于在 Elasticsearch 中处理大量数据。它允许您在不影响性能的情况下检索大量数据。使用 Scroll API,您可以在多个请求之间保持查询上下文,并在每个请求中返回一定数量的结果。这样,您就可以逐步处理大量数据,而不必一次性将所有数据加载到内存中。
第一个查询会在内存中保存一个历史快照和光标(scroll_id)来记录当前消息查询的终止位置。下次查询会从光标记录的位置往后进行查询。这种方式性能好,一般用于海量数据导出或者重建索引。但是 scroll_id 有过期时间,两次查询之间如果 scroll_id 过期了,第二次查询会抛异常“找不到 “scroll_id”。
启用游标查询可以通过在查询的时候设置参数 scroll
的值为我们期望的游标查询的过期时间。 游标查询的过期时间会在每次做查询的时候刷新,所以这个时间只需要足够处理当前批的结果就可以了,而不是处理查询结果的所有文档的所需时间。 这个过期时间的参数很重要,因为保持这个游标查询窗口需要消耗资源,所以我们期望如果不再需要维护这种资源就该早点儿释放掉。 设置这个超时能够让 Elasticsearch 在稍后空闲的时候自动释放这部分资源。
① 执行初始查询,获取scroll_id,其中,scroll参数指定了scroll查询的有效时间,这里设置为1分钟,size 表示每次返回7条数据。
POST /my_index/_search?scroll=1m
{
"size": 7,
"query": {
"match": {
"title": "酒店"
}
}
}
执行上述查询后,查询结果中会返回一个 scroll_id,用于在后续请求中使用,类似于以下内容:
{
"_scroll_id" : "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAACQVUWZFFwRElpblJROU9lZV9LeXI5MUpPQQ==",
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 12,
"relation" : "eq"
},
"max_score" : 0.06382885,
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "1",
"_score" : 0.06382885,
"_source" : {
"title" : "文雅酒店",
"content" : "青岛",
"price" : 556
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "4",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "上海",
"price" : 300
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "5",
"_score" : 0.06382885,
"_source" : {
"title" : "自如酒店",
"content" : "南京",
"price" : 400
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "6",
"_score" : 0.06382885,
"_source" : {
"title" : "如家酒店",
"content" : "杭州",
"price" : 500
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "7",
"_score" : 0.06382885,
"_source" : {
"title" : "非常酒店",
"content" : "合肥",
"price" : 600
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "9",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "淮南",
"price" : 900
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "8",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "淮北",
"price" : 700
}
}
]
}
}
② 使用scroll_id获取下一页数据:
POST /_search/scroll
{
"scroll": "1m",
"scroll_id": "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAACQVUWZFFwRElpblJROU9lZV9LeXI5MUpPQQ=="
}
执行上述查询后,会返回下一页数据和一个新的scroll_id:
{
"_scroll_id" : "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAACQVUWZFFwRElpblJROU9lZV9LeXI5MUpPQQ==",
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 12,
"relation" : "eq"
},
"max_score" : 0.06382885,
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "10",
"_score" : 0.06382885,
"_source" : {
"title" : "丽舍酒店",
"content" : "阜阳",
"price" : 1000,
"uploadTime" : 1678073241
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "11",
"_score" : 0.06382885,
"_source" : {
"title" : "文轩酒店",
"content" : "蚌埠",
"price" : 1020
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "12",
"_score" : 0.06382885,
"_source" : {
"title" : "大理酒店",
"content" : "长沙",
"price" : 1100
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "3",
"_score" : 0.05390298,
"_source" : {
"title" : "金都欣欣酒店",
"content" : "天津",
"price" : 200
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "2",
"_score" : 0.046648744,
"_source" : {
"title" : "金都嘉怡假日酒店",
"content" : "北京",
"price" : 337
}
}
]
}
}
③ 重复步骤②,直到所有数据都被检索完毕
POST /_search/scroll
{
"scroll": "1m",
"scroll_id": "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAACQVUWZFFwRElpblJROU9lZV9LeXI5MUpPQQ=="
}
{
"_scroll_id" : "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAACQVUWZFFwRElpblJROU9lZV9LeXI5MUpPQQ==",
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 12,
"relation" : "eq"
},
"max_score" : 0.06382885,
"hits" : [ ]
}
}
④ 当所有数据都被检索完毕后,需要使用clear_scroll API来清除scroll_id。
DELETE /_search/scroll
{
"scroll_id": [
"DXF1ZXJ5QW5kRmV0Y2gBAAAAAAACQVUWZFFwRElpblJROU9lZV9LeXI5MUpPQQ==",
"DXF1ZXJ5QW5kRmV0Y2gBAAAAAAACQVUWZFFwRElpblJROU9lZV9LeXI5MUpPQQ=="
]
}
注意,scroll查询会占用Elasticsearch的资源,因此在使用时需要注意性能问题。同时,scroll查询也不适用于实时数据的查询,因为scroll查询只能查询到在scroll查询开始时已经存在的数据。
08. ElasticSearch 深分页是什么?
ElasticSearch 深分页是指在搜索结果中,需要跳过大量的文档才能到达目标文档的情况。这种情况通常发生在需要访问大量文档的搜索结果中,例如搜索结果有数百万个文档,但只需要访问其中的前几个文档。这个查询的实现原理类似于mysql中的limit。比如查询10001条数据,需要把前10000条取出来过滤,最后得到数据。
在 ElasticSearch 中,深分页可能会导致性能问题,因为每次跳过大量文档时,ElasticSearch 都需要执行一次查询,并且需要将查询结果中的所有文档加载到内存中,这会占用大量的 CPU 和内存资源。
为了避免这种情况,可以使用 ElasticSearch 的 Scroll API 或 Search After API 来进行分页查询。这些 API 可以在不加载所有文档的情况下,快速地获取搜索结果中的指定文档。
09. ElasticSearch 分页查询的最大限制是多少?
当查询页很深或者查询的数据量很大时,就会发生深分页。ElasticSearch 分页查询的最大限制是 10000 条数据,当查询条数超过10000时,会报错。
GET /my_index/_search
{
"query": {
"match": {
"title": "酒店"
}
},
"from": 0,
"size": 10001
}
查询结果会报错:Result window is too large, from + size must be less than or equal to: [10000] but was [10001]. See the scroll api for a more efficient way to request large data sets. This limit can be set by changing the [index.max_result_window] index level setting.
也就是说我们最多只能分页查询10000条数据。
10. ElasticSearch 如何解除分页查询的限制?
max_result_window 属性控制从Elasticsearch中检索文档的最大数量,默认情况下,它的值为10000。可以通过修改 index.max_result_window 参数来增加搜索结果的最大数量。如果您需要检索更多的文档,请增加max_result_window的值。但是,需要注意的是,增加max_result_window的值可能会影响Elasticsearch的性能。
第一种办法:在kibana中执行,解除索引最大查询数的限制
PUT /my_index/_settings
{
"index.max_result_window":200000
}
第二种办法:在创建索引的时候加上
PUT /my_index
{
"settings": {
"index": {
"max_result_window": 10000
}
}
}
11. ElasticSearch 查询文档总命中数最大限制为多少?
ElasticSearch中可以根据搜索结果中的 hits.total.value 值获取查询文档的总命中数, 但最大返回条数是有限制的,默认情况下最大为 10000 条。数据量不大的情况下这个数值没问题。但是当数据超出 10000 的时候,这个 hits.total.value 将不会增长了,固定为 10000,这个时候的匹配文档数量统计就不准了。
如集群中总共有30000条文档,查询所有时 hits.total.value 的值却为10000:
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "eq"
},
"max_score" : null,
"hits" : [
// ...
]
}
}
12. ElasticSearch 如何解除查询文档总命中数的限制?
Elasticsearch 的 track_total_hits 参数用于控制查询时是否计算总命中数,如果想要统计准确的匹配文档数,需要使用参数 track_total_hits 来开启精确匹配。默认情况下会计算前10000条数据的总命中数,如果想解除这个限制,需要将track_total_hits 参数设置为true。
track_total_hits 参数有三种取值:
true:计算总命中数。
false:不计算总命中数。
数字:只计算前 n 条数据的总命中数。
① 计算总命中数:
GET /my_index/_search
{
"query": {
"match": {
"title": "酒店"
}
},
"track_total_hits": true
}
查询文档的总命中数 hits.total.value 值为12,文档列表 hits.hits 中10条文档(from=0,size=10)
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 12,
"relation" : "eq"
},
"max_score" : 0.06382885,
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "1",
"_score" : 0.06382885,
"_source" : {
"title" : "文雅酒店",
"content" : "青岛",
"price" : 556
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "4",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "上海",
"price" : 300
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "5",
"_score" : 0.06382885,
"_source" : {
"title" : "自如酒店",
"content" : "南京",
"price" : 400
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "6",
"_score" : 0.06382885,
"_source" : {
"title" : "如家酒店",
"content" : "杭州",
"price" : 500
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "7",
"_score" : 0.06382885,
"_source" : {
"title" : "非常酒店",
"content" : "合肥",
"price" : 600
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "9",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "淮南",
"price" : 900
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "8",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "淮北",
"price" : 700
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "10",
"_score" : 0.06382885,
"_source" : {
"title" : "丽舍酒店",
"content" : "阜阳",
"price" : 1000,
"uploadTime" : 1678073241
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "11",
"_score" : 0.06382885,
"_source" : {
"title" : "文轩酒店",
"content" : "蚌埠",
"price" : 1020
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "12",
"_score" : 0.06382885,
"_source" : {
"title" : "大理酒店",
"content" : "长沙",
"price" : 1100
}
}
]
}
}
② 不计算总命中数:
GET /my_index/_search
{
"query": {
"match": {
"title": "酒店"
}
},
"track_total_hits": false
}
查询结果中不返回总命中数 hits.total.value ,文档列表 hits.hits 中10条文档(from=0,size=10)
{
"took" : 8,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"max_score" : 0.06382885,
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "1",
"_score" : 0.06382885,
"_source" : {
"title" : "文雅酒店",
"content" : "青岛",
"price" : 556
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "4",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "上海",
"price" : 300
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "5",
"_score" : 0.06382885,
"_source" : {
"title" : "自如酒店",
"content" : "南京",
"price" : 400
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "6",
"_score" : 0.06382885,
"_source" : {
"title" : "如家酒店",
"content" : "杭州",
"price" : 500
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "7",
"_score" : 0.06382885,
"_source" : {
"title" : "非常酒店",
"content" : "合肥",
"price" : 600
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "9",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "淮南",
"price" : 900
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "8",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "淮北",
"price" : 700
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "10",
"_score" : 0.06382885,
"_source" : {
"title" : "丽舍酒店",
"content" : "阜阳",
"price" : 1000,
"uploadTime" : 1678073241
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "11",
"_score" : 0.06382885,
"_source" : {
"title" : "文轩酒店",
"content" : "蚌埠",
"price" : 1020
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "12",
"_score" : 0.06382885,
"_source" : {
"title" : "大理酒店",
"content" : "长沙",
"price" : 1100
}
}
]
}
}
③ 只计算前5条数据的总命中数:
GET /my_index/_search
{
"query": {
"match": {
"title": "酒店"
}
},
"track_total_hits": 5
}
前5条数据的总命中数 hits.total.value 值为5,文档列表 hits.hits 中10条文档(from=0,size=10)
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 5,
"relation" : "gte"
},
"max_score" : 0.06382885,
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "1",
"_score" : 0.06382885,
"_source" : {
"title" : "文雅酒店",
"content" : "青岛",
"price" : 556
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "4",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "上海",
"price" : 300
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "5",
"_score" : 0.06382885,
"_source" : {
"title" : "自如酒店",
"content" : "南京",
"price" : 400
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "6",
"_score" : 0.06382885,
"_source" : {
"title" : "如家酒店",
"content" : "杭州",
"price" : 500
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "7",
"_score" : 0.06382885,
"_source" : {
"title" : "非常酒店",
"content" : "合肥",
"price" : 600
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "9",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "淮南",
"price" : 900
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "8",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "淮北",
"price" : 700
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "10",
"_score" : 0.06382885,
"_source" : {
"title" : "丽舍酒店",
"content" : "阜阳",
"price" : 1000,
"uploadTime" : 1678073241
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "11",
"_score" : 0.06382885,
"_source" : {
"title" : "文轩酒店",
"content" : "蚌埠",
"price" : 1020
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "12",
"_score" : 0.06382885,
"_source" : {
"title" : "大理酒店",
"content" : "长沙",
"price" : 1100
}
}
]
}
}
④ 计算前15条文档的总命中数:
GET /my_index/_search
{
"query": {
"match": {
"title": "酒店"
}
},
"track_total_hits": 15
}
前15条数据的总命中数 hits.total.value 值为12,文档列表 hits.hits 中10条文档(from=0,size=10)文章来源:https://www.toymoban.com/news/detail-401588.html
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 12,
"relation" : "eq"
},
"max_score" : 0.06382885,
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "1",
"_score" : 0.06382885,
"_source" : {
"title" : "文雅酒店",
"content" : "青岛",
"price" : 556
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "4",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "上海",
"price" : 300
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "5",
"_score" : 0.06382885,
"_source" : {
"title" : "自如酒店",
"content" : "南京",
"price" : 400
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "6",
"_score" : 0.06382885,
"_source" : {
"title" : "如家酒店",
"content" : "杭州",
"price" : 500
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "7",
"_score" : 0.06382885,
"_source" : {
"title" : "非常酒店",
"content" : "合肥",
"price" : 600
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "9",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "淮南",
"price" : 900
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "8",
"_score" : 0.06382885,
"_source" : {
"title" : "金都酒店",
"content" : "淮北",
"price" : 700
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "10",
"_score" : 0.06382885,
"_source" : {
"title" : "丽舍酒店",
"content" : "阜阳",
"price" : 1000,
"uploadTime" : 1678073241
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "11",
"_score" : 0.06382885,
"_source" : {
"title" : "文轩酒店",
"content" : "蚌埠",
"price" : 1020
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "12",
"_score" : 0.06382885,
"_source" : {
"title" : "大理酒店",
"content" : "长沙",
"price" : 1100
}
}
]
}
}
13. ElasticSearch 分页查询的性能优化有哪些?
尽量减少查询的字段,只查询需要的字段。
尽量减少查询的数据量,只查询需要的数据。
使用 scroll 查询或者搜索后再次查询的方式来避免过多的分页查询。
使用索引优化技术,如分片、副本等来提高查询性能。文章来源地址https://www.toymoban.com/news/detail-401588.html
14. SpringBoo整合ES实现:from+size 分页查询?
GET /my_index/_search
{
"query": {
"match": {
"title": "酒店"
}
},
"from": 0, // 从第 1 条数据开始
"size": 3 // 返回 3 条数据
}
@Slf4j
@Service
public class ElasticSearchImpl {
@Autowired
private RestHighLevelClient restHighLevelClient;
public void searchUser() throws IOException {
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// query 查询
MatchQueryBuilder matchQueryBuilder = new MatchQueryBuilder("title","酒店");
searchSourceBuilder.query(matchQueryBuilder);
// 分页查询
int page = 1; // 第1页
int pageSize = 3; // 每页返回3条数据
searchSourceBuilder.from((page-1)*pageSize);
searchSourceBuilder.size(pageSize);
SearchRequest searchRequest = new SearchRequest(new String[]{"my_index"},searchSourceBuilder);
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 搜索结果
SearchHits searchHits = searchResponse.getHits();
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
// hits.hits._source:匹配的文档的原始数据
String sourceAsString = hit.getSourceAsString();
}
System.out.println(searchResponse);
}
}
15. SpringBoo整合ES实现:searchAfetr 分页查询?
POST /my_index/_search
{
"size": 3,
"query": {
"match": {
"title": "酒店"
}
},
"sort": [
{
"price": "asc"
}
],
"track_total_hits": true
}
POST /my_index/_search
{
"size": 1000,
"query": {
"match": {
"title": "酒店"
}
},
"sort": [
{
"price": "asc"
}
],
"search_after": [337]
}
@Slf4j
@Service
public class ElasticSearchImpl {
@Autowired
private RestHighLevelClient restHighLevelClient;
public void searchUser() throws IOException {
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// query 查询
MatchQueryBuilder matchQueryBuilder = new MatchQueryBuilder("title","酒店");
searchSourceBuilder.query(matchQueryBuilder);
// 计算总命中数:track_total_hits
searchSourceBuilder.trackTotalHits(true);
// 每次返回3条数据
searchSourceBuilder.size(3);
// 设置排序字段
searchSourceBuilder.sort(SortBuilders.fieldSort("price").order(SortOrder.ASC));
SearchRequest searchRequest = new SearchRequest(new String[]{"my_index"},searchSourceBuilder);
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
List<Map<String, Object>> result = new ArrayList<>();
while (searchResponse.getHits().getHits()!=null && searchResponse.getHits().getHits().length>0){
SearchHit[] hits = searchResponse.getHits().getHits();
for (SearchHit hit : hits) {
Map<String, Object> sourceAsMap = hit.getSourceAsMap();
result.add(sourceAsMap);
}
// 取得最后一条数据的排序值sort,下次查询时将从这个地方开始取数
Object[] lastNum = hits[hits.length - 1].getSortValues();
searchSourceBuilder.searchAfter(lastNum);
searchRequest.source(searchSourceBuilder);
// 做下次查询
searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
}
System.out.println(result);
}
}
16. SpringBoo整合ES实现:scroll 分页查询?
@Slf4j
@Service
public class ElasticSearchImpl {
@Autowired
private RestHighLevelClient restHighLevelClient;
public void search() throws IOException {
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// query 查询
MatchQueryBuilder matchQueryBuilder = new MatchQueryBuilder("title","酒店");
searchSourceBuilder.query(matchQueryBuilder);
// 计算总命中数:track_total_hits
searchSourceBuilder.trackTotalHits(true);
// 每次返回7条数据
searchSourceBuilder.size(7);
// 设置排序字段
searchSourceBuilder.sort(SortBuilders.fieldSort("price").order(SortOrder.ASC));
SearchRequest searchRequest = new SearchRequest(new String[]{"my_index"},searchSourceBuilder);
// 指定游标的过期时间
searchRequest.scroll(TimeValue.timeValueMinutes(1L));
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 获取 scrollId
String scrollId = searchResponse.getScrollId();
SearchHit[] searchHits = searchResponse.getHits().getHits();
List<Map<String, Object>> result = new ArrayList<>();
for (SearchHit hit: searchHits) {
result.add(hit.getSourceAsMap());
}
while (true) {
// 根据 scrollId 查询下一页数据
SearchScrollRequest scrollRequest = new SearchScrollRequest(scrollId);
// 指定游标的过期时间
scrollRequest.scroll(TimeValue.timeValueMinutes(1L));
SearchResponse scrollResp = restHighLevelClient.scroll(scrollRequest, RequestOptions.DEFAULT);
SearchHit[] hits = scrollResp.getHits().getHits();
if (hits != null && hits.length > 0) {
for (SearchHit hit : hits) {
result.add(hit.getSourceAsMap());
}
} else {
break;
}
}
System.out.println(result);
// After checking, we delete the id stored in the cache. After scrolling, clear the scrolling context
ClearScrollRequest clearScrollRequest = new ClearScrollRequest();
clearScrollRequest.addScrollId(scrollId);
ClearScrollResponse clearScrollResponse = restHighLevelClient.clearScroll(clearScrollRequest, RequestOptions.DEFAULT);
boolean succeeded = clearScrollResponse.isSucceeded();
System.out.println(succeeded);
restHighLevelClient.close();
}
}
到了这里,关于ElasticSearch系列 - SpringBoot整合ES:实现分页搜索 from+size、search after、scroll的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!