数据集地址:Index of /ml/machine-learning-databases/housing (uci.edu)
数据集中共有506条样本数据,每条样本包含了13个影响房价的特征。
数据集格式
0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900 1 296.0 15.30 396.90 4.98 24.00 0.02731 0.00 7.070 0 0.4690 6.4210 78.90 4.9671 2 242.0 17.80 396.90 9.14 21.60 0.02729 0.00 7.070 0 0.4690 7.1850 61.10 4.9671 2 242.0 17.80 392.83 4.03 34.70 0.03237 0.00 2.180 0 0.4580 6.9980 45.80 6.0622 3 222.0 18.70 394.63 2.94 33.40 0.06905 0.00 2.180 0 0.4580 7.1470 54.20 6.0622 3 222.0 18.70 396.90 5.33 36.20 0.02985 0.00 2.180 0 0.4580 6.4300 58.70 6.0622 3 222.0 18.70 394.12 5.21 28.70 0.08829 12.50 7.870 0 0.5240 6.0120 66.60 5.5605 5 311.0 15.20 395.60 12.43 22.90 0.14455 12.50 7.870 0 0.5240 6.1720 96.10 5.9505 5 311.0 15.20 396.90 19.15 27.10 0.21124 12.50 7.870 0 0.5240 5.6310 100.00 6.0821 5 311.0 15.20 386.63 29.93 16.50
数据读取
np.fromfile() 读取数据没有数据类型和数据的形状。所以这里使用了data.reshape()重新变换成原始的形状。
# 导入需要用到的package
import numpy as np
import json
# 读入训练数据
datafile = 'housing.data'
data = np.fromfile(datafile, sep=' ')
print(data.shape)
# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格
feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
feature_num = len(feature_names)
# 将原始数据进行reshape, 变为[N, 14]这样的形状
data = data.reshape([data.shape[0] // feature_num, feature_num])
print(data.shape)
# 输出(506, 14)
# 查看数据
X = data[0]
print(X.shape)
print(X)
(7084,)
(506, 14)
(14,)
[6.320e-03 1.800e+01 2.310e+00 0.000e+00 5.380e-01 6.575e+00 6.520e+01
4.090e+00 1.000e+00 2.960e+02 1.530e+01 3.969e+02 4.980e+00 2.400e+01]
划分数据集
在机器学习中,数据集通常划分为训练集和测试集,训练集用于训练,测试集用来评估模型的性能。两者的比例大于是8:1
# 导入需要用到的package
import numpy as np
import json
# 读入训练数据
datafile = 'housing.data'
data = np.fromfile(datafile, sep=' ')
print(data.shape)
# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格
feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
feature_num = len(feature_names)
# 将原始数据进行reshape, 变为[N, 14]这样的形状
data = data.reshape([data.shape[0] // feature_num, feature_num])
print(data.shape)
# 输出(506, 14)
# 查看数据
X = data[0]
print(X.shape)
print(X)
ratio = 0.8
offset = int(data.shape[0] * ratio)
train_data = data[:offset]
test_data = data[offset:]
print('训练集的大小',train_data.shape)
print('测试集的大小',test_data.shape)
(7084,)
(506, 14)
(14,)
[6.320e-03 1.800e+01 2.310e+00 0.000e+00 5.380e-01 6.575e+00 6.520e+01
4.090e+00 1.000e+00 2.960e+02 1.530e+01 3.969e+02 4.980e+00 2.400e+01]
训练集的大小 (404, 14)
测试集的大小 (102, 14)
数据归一化
# 导入需要用到的package
import numpy as np
import json
# 读入训练数据
datafile = 'housing.data'
data = np.fromfile(datafile, sep=' ')
print(data.shape)
# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格
feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
feature_num = len(feature_names)
# 将原始数据进行reshape, 变为[N, 14]这样的形状
data = data.reshape([data.shape[0] // feature_num, feature_num])
print(data.shape)
# 输出(506, 14)
# 查看数据
X = data[0]
print(X.shape)
print(X)
ratio = 0.8
offset = int(data.shape[0] * ratio)
train_data = data[:offset]
test_data = data[offset:]
print('训练集的大小',train_data.shape)
print('测试集的大小',test_data.shape)
print('归一化前的数据',train_data[0])
# 计算train数据集的最大值、最小值和平均值
maxinums, mininums, avgs = train_data.max(axis=0), train_data.min(axis=0), train_data.sum(axis=0) / train_data.shape[0]
# 对数据进行归一化处理
for i in range(feature_num):
# print(maxinums[i], mininums[i], avgs[i])
train_data[:, i] = (train_data[:, i] - avgs[i]) / (maxinums[i] - mininums[i])
print('归一化后的数据',train_data[0])
(7084,)
(506, 14)
(14,)
[6.320e-03 1.800e+01 2.310e+00 0.000e+00 5.380e-01 6.575e+00 6.520e+01
4.090e+00 1.000e+00 2.960e+02 1.530e+01 3.969e+02 4.980e+00 2.400e+01]
训练集的大小 (404, 14)
测试集的大小 (102, 14)
归一化前的数据 [6.320e-03 1.800e+01 2.310e+00 0.000e+00 5.380e-01 6.575e+00 6.520e+01
4.090e+00 1.000e+00 2.960e+02 1.530e+01 3.969e+02 4.980e+00 2.400e+01]
归一化后的数据 [-0.02146321 0.03767327 -0.28552309 -0.08663366 0.01289726 0.04634817
0.00795597 -0.00765794 -0.25172191 -0.11881188 -0.29002528 0.0519112
-0.17590923 -0.00390539]
模型
import numpy as np
class NetWork(object):
def __init__(self, num_of_weights):
# 随机产生w的初始值
# 为了保持程序每次运行结果的一致性,此处设置了固定的随机数种子
np.random.seed(0)
self.w = np.random.randn(num_of_weights, 1)
self.b = 0
def forward(self, x):
z = np.dot(x, self.w) + self.b
return z
def loss(self, z, y):
error = z - y
cost = error * error
cost = np.mean(cost)
return cost
def gradient(self, x, y):
z = self.forward(x)
gradient_w = (z - y) * x
gradient_w = np.mean(gradient_w, axis=0) # axis=0表示把每一行做相加然后再除以总的行数
gradient_w = gradient_w[:, np.newaxis]
gradient_b = (z - y)
gradient_b = np.mean(gradient_b)
# 此处b是一个数值,所以可以直接用np.mean得到一个标量(scalar)
return gradient_w, gradient_b
def update(self, gradient_w, gradient_b, eta=0.01): # eta代表学习率,是控制每次参数值变动的大小,即移动步长,又称为学习率
self.w = self.w - eta * gradient_w # 相减: 参数向梯度的反方向移动
self.b = self.b - eta * gradient_b
def train(self, x, y, iterations=1000, eta=0.01):
losses = []
for i in range(iterations):
z = self.forward(x) # 前向计算
L = self.loss(z, y) # 求误差
gradient_w, gradient_b = self.gradient(x, y) # 求梯度
self.update(gradient_w, gradient_b, eta) # 更新参数
losses.append(L)
if (i + 1) % 10 == 0:
print('iter {}, loss {}'.format(i, L))
return losses
if __name__=="__main__":
#定义模型的输入
input=np.random.randn(1000,13) #表示有4个样本,每个样本有13个特征
gt_output=np.random.randn(1000,1) ##真实的标签,后续进行损失计算
#定义模型
model=NetWork(13)
print('模型的初始参数',model.w,model.b)
for i in range(100):
#模型的前线传播得到输出
output=model.forward(input)
#计算模型的损失
loss=model.loss(output,gt_output)
# print(loss)
#求梯度
w,b=model.gradient(input,output)
print('第{}epoch参数'.format(i),model.w,model.b)
#模型的更新
model.update(w,b)
完整代码
import numpy as np
from matplotlib import pyplot as plt
def load_data():
# 从文件导入数据
datafile = 'housing.data'
data = np.fromfile(datafile, sep=' ')
print(data.shape)
# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
feature_num = len(feature_names)
# 将原始数据进行reshape, 变为[N, 14]这样的形状
data = data.reshape([data.shape[0] // feature_num, feature_num])
print(data.shape)
# 将原数据集拆分成训练集和测试集
# 这里使用80%的数据做训练,20%的数据做测试
# 测试集和训练集必须是没有交集的
ratio = 0.8
offset = int(data.shape[0] * ratio)
data_slice = data[:offset]
# 计算train数据集的最大值、最小值和平均值
maxinums, mininums, avgs = data_slice.max(axis=0), data_slice.min(axis=0), data_slice.sum(axis=0) / data_slice.shape[0]
# 对数据进行归一化处理
for i in range(feature_num):
# print(maxinums[i], mininums[i], avgs[i])
data[:, i] = (data[:, i] - avgs[i]) / (maxinums[i] - mininums[i])
# 训练集和测试集的划分比例
# ratio = 0.8
train_data = data[:offset]
test_data = data[offset:]
return train_data, test_data
class NetWork(object):
def __init__(self, num_of_weights):
# 随机产生w的初始值
# 为了保持程序每次运行结果的一致性,此处设置了固定的随机数种子
np.random.seed(0)
self.w = np.random.randn(num_of_weights, 1)
self.b = 0
def forward(self, x):
z = np.dot(x, self.w) + self.b
return z
def loss(self, z, y):
error = z - y
cost = error * error
cost = np.mean(cost)
return cost
def gradient(self, x, y):
z = self.forward(x)
gradient_w = (z - y) * x
gradient_w = np.mean(gradient_w, axis=0) # axis=0表示把每一行做相加然后再除以总的行数
gradient_w = gradient_w[:, np.newaxis]
gradient_b = (z - y)
gradient_b = np.mean(gradient_b)
# 此处b是一个数值,所以可以直接用np.mean得到一个标量(scalar)
return gradient_w, gradient_b
def update(self, gradient_w, gradient_b, eta=0.01): # eta代表学习率,是控制每次参数值变动的大小,即移动步长,又称为学习率
self.w = self.w - eta * gradient_w # 相减: 参数向梯度的反方向移动
self.b = self.b - eta * gradient_b
def train(self, x, y, iterations=1000, eta=0.01):
losses = []
for i in range(iterations):
# 四步法
z = self.forward(x)
L = self.loss(z, y)
gradient_w, gradient_b = self.gradient(x, y)
self.update(gradient_w, gradient_b, eta)
losses.append(L)
if (i + 1) % 10 == 0:
print('iter {}, loss {}'.format(i, L))
return losses
# 获取数据
train_data, test_data = load_data()
print(train_data.shape)
x = train_data[:, :-1]
y = train_data[:, -1:]
# 创建网络
net = NetWork(13)
num_iterations = 2000
# 启动训练
losses = net.train(x, y, iterations=num_iterations, eta=0.01)
# 画出损失函数的变化趋势
plot_x = np.arange(num_iterations)
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.show()
参考文献:文章来源:https://www.toymoban.com/news/detail-401866.html
波士顿房价预测——机器学习入门级案例_心无旁骛~的博客-CSDN博客文章来源地址https://www.toymoban.com/news/detail-401866.html
到了这里,关于python 波士顿房价预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!