使用 Flink CDC 实现 MySQL 数据,表结构实时入 Apache Doris

这篇具有很好参考价值的文章主要介绍了使用 Flink CDC 实现 MySQL 数据,表结构实时入 Apache Doris。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

背景

  1. 现有数据库:mysql
  2. 数据:库表较多,每个企业用户一个分库,每个企业下的表均不同,无法做到聚合,且表可以被用户随意改动,增删改列等,增加表
  3. 分析:用户自定义分析,通过拖拽定义图卡,要求实时,点击确认即出现相应结果,其中有无法预判的过滤
  4. 问题:随业务增长,企业用户越来越多,mysql压力越来越大,已经出现一些图卡加载过慢[mysql sql]

同步流程

  1. 脚本读取mysql中需要同步的企业,在获取需要同步的表,以字段 member_id,table 字段存储doris中表A,
  2. 脚本读取doris 表A数据,获取mysql中的schema,通过转换,获取doris建表语句,连接doris执行语句
  3. cancel flink 任务,并重新启动flink任务【重启只适合添加新库,新表不用重启】
    1. 每次重启连接doris 表A,获取database,组装 databaseList,tableList,tablseList 使用正则,database1.*,database2.*,对库内所有表进行监听,这样可以达到mysql添加新表时将新表加入同步队列
    2. doris目前还不支持同步数据时同步修改表结构【据大佬说应该1.2+会支持】,不过cdc可以获取ddlsql,可以通过jdbc的方式连接doris去执行ddlsql,因为sql有点差异,需要转换才能执行,结合mysql新表,可以在ddl获取create 对doris进项建表
    3. 在将数据导入之doris时,速度导入过快都会出现导入失败,-235错误,可以使用控制读取binlog数量+window聚合 去批量导入
          如需要导入表B的数据有{"id":1,"name":"小明"},{"id":2,"name":"小红"},如果执行两次put显然时不太合理的,可以使用jsonArr的方式[{"id":1,"name":"小明"},{"id":2,"name":"小红"}]一次导入

代码

        python 带码不在赘述,git:GitHub - xiaofeicn/MysqlToDorisTable

        Flink CDC

          flink中需要感知新表,每日重启时获取doris 表A数据,并组装成databaseList,tableList的参数,代码如下,代码有注释

        FlinkCDCMysql2Doris.scala

package com.xxxx.mysql2doris


import org.apache.flink.streaming.api.TimeCharacteristic
import com.zbkj.util.{DorisStreamLoad, FlinkCDCSyncETL, KafkaUtil, PropertiesManager, PropertiesUtil, SinkDoris, SinkSchema}
import com.ververica.cdc.connectors.mysql.source.MySqlSource
import com.ververica.cdc.connectors.mysql.table.StartupOptions
import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema
import com.zbkj.util.KafkaUtil.proper
import net.sf.json.JSONObject
import org.apache.flink.api.common.eventtime.WatermarkStrategy
import org.apache.flink.api.common.restartstrategy.RestartStrategies
import org.apache.flink.api.common.time.Time
import org.apache.flink.api.common.typeinfo.BasicTypeInfo
import org.apache.flink.streaming.api.CheckpointingMode
import org.apache.flink.streaming.api.datastream.{DataStream, DataStreamSource, DataStreamUtils}
import org.apache.flink.streaming.api.environment.{CheckpointConfig, StreamExecutionEnvironment}
import org.slf4j.{Logger, LoggerFactory}
import org.apache.flink.api.java.io.jdbc.JDBCInputFormat
import org.apache.flink.api.java.typeutils.RowTypeInfo
import org.apache.flink.streaming.api.environment.CheckpointConfig.ExternalizedCheckpointCleanup
import org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink
import org.apache.kafka.connect.json.JsonConverterConfig

import java.util.Properties
import java.util.concurrent.TimeUnit
import scala.collection.JavaConverters.asScalaIteratorConverter

object FlinkCDCMysql2Doris {

  PropertiesManager.initUtil()
  val props: PropertiesUtil = PropertiesManager.getUtil
  val log: Logger = LoggerFactory.getLogger(this.getClass)

  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    // 并行度
    env.setParallelism(props.parallelism)
    env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)

    /**
     * checkpoint的相关设置
     */
    // 启用检查点,指定触发checkpoint的时间间隔(单位:毫秒,默认500毫秒),默认情况是不开启的
    env.enableCheckpointing(10000L, CheckpointingMode.EXACTLY_ONCE)
    // 设定Checkpoint超时时间,默认为10分钟
    env.getCheckpointConfig.setCheckpointTimeout(600000)

    /** 设定两个Checkpoint之间的最小时间间隔,防止出现例如状态数据过大而导致Checkpoint执行时间过长,从而导致Checkpoint积压过多
     * 最终Flink应用密切触发Checkpoint操作,会占用了大量计算资源而影响到整个应用的性能(单位:毫秒) */
    env.getCheckpointConfig.setMinPauseBetweenCheckpoints(60000)
    // 默认情况下,只有一个检查点可以运行
    // 根据用户指定的数量可以同时触发多个Checkpoint,进而提升Checkpoint整体的效率
    //    env.getCheckpointConfig.setMaxConcurrentCheckpoints(2)
    /** 外部检查点
     * 不会在任务正常停止的过程中清理掉检查点数据,而是会一直保存在外部系统介质中,另外也可以通过从外部检查点中对任务进行恢复 */
    env.getCheckpointConfig.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)

    /** 如果有更近的保存点时,是否将作业回退到该检查点 */
    env.getCheckpointConfig.setPreferCheckpointForRecovery(true)
    // 设置可以允许的checkpoint失败数
    env.getCheckpointConfig.setTolerableCheckpointFailureNumber(3)
    //设置可容忍的检查点失败数,默认值为0表示不允许容忍任何检查点失败
    env.getCheckpointConfig.setTolerableCheckpointFailureNumber(2)

    /**
     * 重启策略的配置
     */
    // 重启3次,每次失败后等待10000毫秒
    //    env.setRestartStrategy(RestartStrategies.failureRateRestart(5, Time.of(3, TimeUnit.MINUTES), Time.of(30, TimeUnit.SECONDS)))
    env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 10000L))

    /**
     * 获取同步表配置
     * database table
     */
    val inputMysql = env.createInput(JDBCInputFormat.buildJDBCInputFormat()
      .setDrivername("com.mysql.jdbc.Driver")
      .setDBUrl("jdbc:mysql://%s:%d/%s".format(props.doris_host, props.doris_port, props.sync_config_db))
      .setUsername(props.doris_user)
      .setPassword(props.doris_password)
      .setQuery("select member_id,sync_table from %s.%s".format(props.sync_config_db, props.sync_config_table))
      .setRowTypeInfo(new RowTypeInfo(BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.STRING_TYPE_INFO))
      .finish()).uid("inputMysql")


    val databaseName: DataStream[String] = inputMysql.map(line => line.getField(0).toString).uid("databaseName")
    // 模糊监听
    val tableName: DataStream[String] = inputMysql.map(line => line.getField(0).toString + ".*").uid("tableName")
    val producer = KafkaUtil.getProducer

    val databaseIter = databaseName.executeAndCollect().asScala
    val databaseList = databaseIter.toSet.mkString(",")

    val tableIter = tableName.executeAndCollect().asScala
    val tableList = tableIter.toSet.mkString(",")
    println("databaseList:", databaseList)
    println("tableList:", tableList)
    val customConverterConfigs = new java.util.HashMap[String, Object] {
      put(JsonConverterConfig.DECIMAL_FORMAT_CONFIG, "numeric")
    }
    /**
     *
     * mysql source for doris
     */
    val mySqlSource = MySqlSource.builder[String]()
      .hostname(props.rds_host)
      .port(props.rds_port)
      .databaseList(databaseList)
      .tableList(tableList)
      .username(props.rds_user)
      .password(props.rds_password)
      .serverId("11110")
      .splitSize(props.split_size)
      .fetchSize(props.fetch_size)
      //       .startupOptions(StartupOptions.latest())
      // 全量读取
      .startupOptions(StartupOptions.initial())
      .includeSchemaChanges(true)
      // 发现新表,加入同步任务,需要在tableList中配置
      .scanNewlyAddedTableEnabled(true)
      .deserializer(new JsonDebeziumDeserializationSchema(false, customConverterConfigs)).build()

    val dataStreamSource: DataStreamSource[String] = env.fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "MySQL Source")
    val ddlSqlStream: DataStream[String] = dataStreamSource.filter(line => line.contains("historyRecord") && !line.contains("CHANGE COLUMN")).uid("ddlSqlStream")

    val dmlStream: DataStream[String] = dataStreamSource.filter(line => !line.contains("historyRecord") && !line.contains("CHANGE COLUMN")).uid("dmlStream")

    val ddlDataStream = FlinkCDCSyncETL.ddlFormat(ddlSqlStream)
    val dmlDataStream = FlinkCDCSyncETL.binLogETL(dmlStream)
    //    ddlDataStream.print()

    //producer 为了在数据同步后通知分析任务
    val dorisStreamLoad = new DorisStreamLoad(props, producer)
    ddlDataStream.addSink(new SinkSchema(props)).name("ALTER TABLE TO DORIS").uid("SinkSchema")
    dmlDataStream.addSink(new SinkDoris(dorisStreamLoad)).name("Data TO DORIS").uid("SinkDoris")
    env.execute("Flink CDC Mysql To Doris With Initial")


  }

  case class dataLine(merge_type: String, db: String, table: String, data: String)


}
FlinkCDCBinLogETL.scala
package com.xxxx.util

import net.sf.json.JSONObject
import org.apache.flink.api.common.typeinfo.{TypeHint, TypeInformation}
import org.apache.flink.api.java.tuple.Tuple4
import org.apache.flink.streaming.api.datastream.DataStream
import org.apache.flink.streaming.api.windowing.time.Time

import scala.collection.mutable.ArrayBuffer
import scala.util.matching.Regex

object FlinkCDCSyncETL {

  def binLogETL(dataStreamSource: DataStream[String]): DataStream[org.apache.flink.api.java.tuple.Tuple4[String, String, String, String]] = {
    /**
     * 根据不同日志类型 匹配load doris方式
     */
    val tupleData: DataStream[org.apache.flink.api.java.tuple.Tuple4[String, String, String, String]] = dataStreamSource.map(line => {
      var data: JSONObject = null
      var mergetype = "APPEND"
      val lineObj = JSONObject.fromObject(line)

      val source = lineObj.getJSONObject("source")
      val db = source.getString("db")
      val table = source.getString("table")
      if ("d" == lineObj.getString("op")) {
        val oo = lineObj.getJSONObject("before")
        data = lineObj.getJSONObject("before")
        mergetype = "DELETE"
      } else if ("u" == lineObj.getString("op")) {
        data = lineObj.getJSONObject("after")
        mergetype = "MERGE"
      } else if ("c" == lineObj.getString("op")) {
        data = lineObj.getJSONObject("after")
      } else if ("r" == lineObj.getString("op")) {
        data = lineObj.getJSONObject("after")
        mergetype = "APPEND"
      }
      new Tuple4[String, String, String, String](mergetype, db, table, data.toString)
    }).returns(TypeInformation.of(new TypeHint[Tuple4[String, String, String, String]] {}))
    tupleData
    /**
     * 窗口聚合数据,将相同load方式,db,table的json 数据组合为长字符串,
     */
    val byKeyData: DataStream[org.apache.flink.api.java.tuple.Tuple4[String, String, String, String]] = tupleData.keyBy(0, 1, 2)
      .timeWindow(Time.milliseconds(1000))
      .reduce((itemFirst, itemSecond) => new Tuple4(itemFirst.f0, itemFirst.f1, itemFirst.f2, itemFirst.f3 + "=-=-=" + itemSecond.f3))
    byKeyData
  }

  def ddlFormat(ddlDataStream: DataStream[String]): DataStream[String] = {

    val ddlStrDataStream: DataStream[String] = ddlDataStream.map(line => {
      try {
        val lineObj = JSONObject.fromObject(line)
        val historyRecord = JSONObject.fromObject(lineObj.getString("historyRecord"))
        val tableChangesArray = historyRecord.getJSONArray("tableChanges")
        val tableChanges = JSONObject.fromObject(tableChangesArray.getJSONObject(0))
        val tableChangeType = tableChanges.getString("type")
        var ddlSql = ""

        val table = tableChanges.optJSONObject("table")
        val primaryKeyColumnNames = table.getString("primaryKeyColumnNames").replace("[", "").replace("]", "").replace("\"", "")
        val columnsArray = table.getJSONArray("columns")
        // 建表转换
        if (tableChangeType == "CREATE") {
          val tableName = tableChanges.getString("id").replace("\"", "")
          val columnsArrayBuffer = ArrayBuffer[String]()
          columnsArray.forEach(line => {
            val columnJson = JSONObject.fromObject(line)
            val name = columnJson.getString("name")
            val typeName = columnJson.getString("typeName")
            val length = columnJson.optInt("length", 1)
            val scale = columnJson.optInt("scale", 2)
            val lastColumnType = matchColumnType(typeName, length, scale)
            val lastColumn = s"$name $lastColumnType"
            columnsArrayBuffer.+=(lastColumn)
          })

          // 对列重新排序,主键依次放在最前面,避免错误Key columns should be a ordered prefix of the scheme
          val keys = primaryKeyColumnNames.split(",")
          for (indexOfCol <- 0 until keys.length) {
            val col = keys(indexOfCol)
            var columnFormat = ""
            columnsArrayBuffer.foreach(column => {
              if (column.startsWith(col)) {
                columnFormat = column
              }

            })
            val index = columnsArrayBuffer.indexOf(columnFormat)
            columnsArrayBuffer.remove(index)
            columnsArrayBuffer.insert(indexOfCol, columnFormat)

          }


          val header = s"CREATE TABLE IF NOT EXISTS $tableName ("
          val end = s""") UNIQUE KEY($primaryKeyColumnNames)  DISTRIBUTED BY HASH($primaryKeyColumnNames) BUCKETS 10  PROPERTIES ("replication_allocation" = "tag.location.default: 1")"""
          ddlSql = header + columnsArrayBuffer.mkString(",") + end
        } else if (tableChangeType == "ALTER") {
          var ddl = historyRecord.getString("ddl").replace("\r\n", " ")
          println(ddl)
          if (ddl.startsWith("RENAME")) {
            ddl = ddl.replace("`", "")
            val arr = ddl.split("")
            ddlSql = s"ALTER TABLE ${arr(2)} RENAME ${arr(4)}"
          } else if (ddl.contains("DROP COLUMN")) {

            ddlSql = ddl
          } else {
            val dbTableName = tableChanges.getString("id").replace("\"", "")
            val addColName = ddl.split(" ")(5).replace("`", "")
            var colTpe = ""
            columnsArray.forEach(line => {

              val columnJson = JSONObject.fromObject(line)

              if (columnJson.getString("name") == addColName) {
                val typeName = columnJson.getString("typeName")
                val length = columnJson.optInt("length", 1)
                val scale = columnJson.optInt("scale", 2)
                colTpe = matchColumnType(typeName, length, scale)
              }

            })
            if (ddl.contains("ADD COLUMN")) {

              ddlSql = s"ALTER TABLE $dbTableName ADD COLUMN $addColName $colTpe"
            } else {

              ddlSql = s"ALTER TABLE $dbTableName MODIFY COLUMN $addColName $colTpe"
            }

          }
        }

        println(ddlSql)
        ddlSql
      }
      catch {
        case ex: Exception => println(ex)
          "select 1"
      }

    })
    ddlStrDataStream
  }

  def showCapital(x: Option[String]): String = x match {
    case Some(s) => s
    case None => "?"
  }

  def matchColumnType(columnType: String, length: Int, scale: Int): String = {
    var returnColumnType = "VARCHAR(255)"
    columnType match {
      case "INT UNSIGNED" => returnColumnType = s"INT($length)"
      case "INT" => returnColumnType = s"INT($length)"
      case "TINYINT" => returnColumnType = s"TINYINT($length)"
      case "VARCHAR" => returnColumnType = s"VARCHAR(${length * 3})"
      case "BIGINT" => returnColumnType = s"BIGINT(${length})"
      case "TINYTEXT" => returnColumnType = s"TINYTEXT"
      case "LONGTEXT" => returnColumnType = s"STRING"
      case "TEXT" => returnColumnType = s"STRING"
      case "DECIMAL" => returnColumnType = s"DECIMAL($length,$scale)"
      case "VARBINARY" => returnColumnType = s"STRING"
      case "TIMESTAMP" => returnColumnType = s"STRING"
      case "ENUM" => returnColumnType = s"TINYINT"
      case "MEDIUMINT" => returnColumnType = s"INT"
      case "SMALLINT" => returnColumnType = s"SMALLINT"
      case "MEDIUMTEXT" => returnColumnType = s"STRING"
      case _ => returnColumnType = s"STRING"
    }
    returnColumnType
  }

}
DorisStreamLoad.scala
package com.xxxx.util

import net.sf.json.JSONObject
import net.sf.json.JSONArray
import org.apache.http.HttpHeaders
import org.apache.http.client.methods.HttpPut
import org.apache.http.entity.StringEntity
import org.apache.http.entity.BufferedHttpEntity
import org.apache.http.impl.client.{DefaultRedirectStrategy, HttpClientBuilder, HttpClients}
import org.apache.http.util.EntityUtils
import org.slf4j.{Logger, LoggerFactory}
import org.apache.commons.codec.binary.Base64
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}

import java.io.IOException
import java.nio.charset.StandardCharsets
import java.util.UUID

class DorisStreamLoad(props: PropertiesUtil,producer:KafkaProducer[String, String]) extends Serializable {


  lazy val httpClientBuilder: HttpClientBuilder = HttpClients.custom.setRedirectStrategy(new DefaultRedirectStrategy() {
    override protected def isRedirectable(method: String): Boolean = {
      // If the connection target is FE, you need to deal with 307 redirect。
      true
    }
  })


  def loadJson(jsonData: String, mergeType: String, db: String, table: String): Unit = try {
    val loadUrlPattern = "http://%s/api/%s/%s/_stream_load?"
    val arr = jsonData.split("=-=-=")
    val jsonArray = new JSONArray()
    for (line <- arr) {
      try {
        val js = JSONObject.fromObject(line)
        jsonArray.add(js)
      } catch {
        case e: Exception =>
          println(e)
          println(line)
      }

    }
    val jsonArrayStr = jsonArray.toString()
    val client = httpClientBuilder.build
    val loadUrlStr = String.format(loadUrlPattern, props.doris_load_host, db, table)
    try {
      val put = new HttpPut(loadUrlStr)
      put.removeHeaders(HttpHeaders.CONTENT_LENGTH)
      put.removeHeaders(HttpHeaders.TRANSFER_ENCODING)
      put.setHeader(HttpHeaders.EXPECT, "100-continue")
      put.setHeader(HttpHeaders.AUTHORIZATION, basicAuthHeader)
      val label = UUID.randomUUID.toString
      // You can set stream load related properties in the Header, here we set label and column_separator.
      put.setHeader("label", label)
      put.setHeader("merge_type", mergeType)
      //      put.setHeader("two_phase_commit", "true")
      put.setHeader("column_separator", ",")
      put.setHeader("format", "json")
      put.setHeader("strip_outer_array", "true")
      put.setHeader("exec_mem_limit", "6442450944")
      val entity = new StringEntity(jsonArrayStr, "UTF-8")

      put.setEntity(entity)

      try {
        val response = client.execute(put)
        try {
          var loadResult = ""
          if (response.getEntity != null) {
            loadResult = EntityUtils.toString(response.getEntity)
          }
          val statusCode = response.getStatusLine.getStatusCode
          if (statusCode != 200) {
            throw new IOException("Stream load failed. status: %s load result: %s".format(statusCode, loadResult))
          }

        } finally if (response != null) {
          response.close()
        }
      }
    }
    finally
      if (client != null) client.close()
  }

  /**
   * Construct authentication information, the authentication method used by doris here is Basic Auth
   *
   */
  def basicAuthHeader: String = {
    val tobeEncode = props.doris_user + ":" + props.doris_password
    val encoded = Base64.encodeBase64(tobeEncode.getBytes(StandardCharsets.UTF_8))
    "Basic " + new String(encoded)
  }


}
SinkDoris.scala
package com.xxxx.util


import org.apache.flink.api.java.tuple.Tuple4
import com.zbkj.mysql2doris.FlinkCDCMysql2Doris.dataLine
import net.sf.json.JSONObject
import org.apache.flink.streaming.api.functions.sink.SinkFunction


class SinkDoris(dorisStreamLoad:DorisStreamLoad) extends SinkFunction[Tuple4[String, String, String, String]]  {

//  val  dorisStreamLoad:DorisStreamLoadT=null
  /**
   * 在open()方法中建立连接,这样不用每次invoke的时候都要建立连接和释放连接。
   */
//   def open(parameters: Configuration): Unit = {
//     super
//     super.open(parameters);
//
//  }

  /**
   * 每个元素的插入都要调用一次invoke()方法进行插入操作
   */
  override def invoke(value:Tuple4[String, String, String, String]): Unit = {

    dorisStreamLoad.loadJson(value.f3,value.f0,value.f1,value.f2)
    val producer = KafkaUtil.getProducer
    val json = new JSONObject()
    json.put("db",value.f2)
    json.put("table",value.f3)
    KafkaUtil.sendKafkaMsg(producer, json.toString, "sync_table")

  }

}
SinkSchema.scala
package com.xxxx.util

import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.sink.{RichSinkFunction, SinkFunction}

import java.sql.{Connection, DriverManager, PreparedStatement}

class SinkSchema(props:PropertiesUtil) extends RichSinkFunction[String]  {
  var conn: Connection = _
  var ps : PreparedStatement  = _
  var mysqlPool: MysqlPool = _

  override def open(parameters: Configuration): Unit = {
    super.open(parameters)
    mysqlPool = MysqlManager.getMysqlPool
    conn = mysqlPool.getConnection
       conn.setAutoCommit(false)
  }

  override def close(): Unit = {
    super.close()
    if (conn != null) {
      conn.close()
    }
    if (ps != null) {
      ps.close()
    }
  }

  override def invoke(sql: String, context: SinkFunction.Context): Unit = {
    super.invoke(sql, context)
    if (sql !="" && sql.nonEmpty){
      ps = conn.prepareStatement(sql)
      try {
        ps.execute()
      }catch {
        case ex:Exception=>println(ex)
      }

      conn.commit()

    }
//    conn.close()
  }

}
PropertiesUtil.scala
package com.xxxx.util

import java.io.FileInputStream
import java.util.Properties

/**
 * propertiesUtil
 *
 */
class PropertiesUtil extends Serializable {


  private val props = new Properties()

  var doris_host = ""
  var doris_port = 0
  var doris_user = ""
  var doris_password = ""

  var database_list = ""
  var table_list = ""

  var mysql_host = ""
  var mysql_port = 0
  var mysql_user = ""
  var mysql_password = ""
  var doris_load_host = ""

  var rds_host = ""
  var rds_port = 0
  var rds_user = ""
  var rds_password = ""
  var rds_database = ""

//  var sync_database_select_sql = ""
//  var sync_table_select_sql = ""
//  var sync_config_host = ""
//  var sync_config_port = 0
//  var sync_config_user = ""
//  var sync_config_password = ""
  var sync_config_db = ""
  var sync_config_table = ""
  var sync_redis_table = ""
  var address_table = ""

  var parallelism = 0
  var split_size = 0
  var fetch_size = 0

  var bootstrap_servers = ""
  var topic = ""
  var group_id = ""
  var offset_mode = ""

  // reids
  var redis_max_total: Int = 0
  var redis_max_idle: Int = 0
  var redis_min_idle: Int = 0
  var redis_host = ""
  var redis_port: Int = 0
  var redis_timeout: Int = 0
  var redis_password = ""
  var redis_db_index: Int = 0
  var prefix = "0"


  def init(filePath: String): Unit = {
    props.load(new FileInputStream(filePath))

    // hdfs
    doris_host = props.getProperty("doris.host")
    doris_port = props.getProperty("doris.port").toInt
    doris_user = props.getProperty("doris.user")
    doris_password = props.getProperty("doris.password")

    database_list = props.getProperty("database.list")
    table_list = props.getProperty("table.list")

    mysql_host = props.getProperty("mysql.host")
    mysql_port = props.getProperty("mysql.port").toInt
    mysql_user = props.getProperty("mysql.user")
    mysql_password = props.getProperty("mysql.password")
    doris_load_host = props.getProperty("doris.load.host")


    rds_host = props.getProperty("rds.host")
    rds_port = props.getProperty("rds.port").toInt
    rds_user = props.getProperty("rds.user")
    rds_password = props.getProperty("rds.password")
    rds_database = props.getProperty("rds.database")
    sync_config_db = props.getProperty("sync.config.db")
    sync_config_table = props.getProperty("sync.config.table")
    sync_redis_table = props.getProperty("sync.redis.table")
    address_table = props.getProperty("address.table")


    parallelism = props.getProperty("parallelism").toInt
    split_size = props.getProperty("split.size").toInt
    fetch_size = props.getProperty("fetch.size").toInt

    bootstrap_servers = props.getProperty("bootstrap.servers")
    topic = props.getProperty("topic")
    group_id = props.getProperty("group.id")
    offset_mode = props.getProperty("offset.mode")


    // reids
    redis_max_total = props.getProperty("redis.max.total").toInt
    redis_max_idle = props.getProperty("redis.max.idle").toInt
    redis_min_idle = props.getProperty("redis.min.idle").toInt
    redis_host = props.getProperty("redis.redis.host")
    redis_port = props.getProperty("redis.redis.port").toInt
    redis_timeout = props.getProperty("redis.redis.timeout").toInt
    redis_password = props.getProperty("redis.password")
    redis_db_index = props.getProperty("redis.db.index").toInt

    prefix = props.getProperty("redis.key.prefix")


  }

  def stringToInt(prop: String): Int = {
    try {
      prop.toInt
    } catch {
      case ex: Exception => {
        0
      }
    }
  }
}

//惰性单例,真正计算时才初始化对象
object PropertiesManager {
  @volatile private var propertiesUtil: PropertiesUtil = _

  def getUtil: PropertiesUtil = {
    propertiesUtil
  }

  def initUtil(): Unit = {
    var filePath = "config.properties"
//        filePath = this.getClass.getResource("/").toString.replace("file:", "") + "config.properties"
    filePath = "/opt/flink-1.13.6/job/mysql2doris/config.properties"
    if (propertiesUtil == null) {
      propertiesUtil = new PropertiesUtil
    }
    propertiesUtil.init(filePath)
    //    propertiesUtil.evn = evn
  }
}

若有疑问请留言或者 加入857技术社区文章来源地址https://www.toymoban.com/news/detail-401953.html

到了这里,关于使用 Flink CDC 实现 MySQL 数据,表结构实时入 Apache Doris的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Flink CDC 实时mysql到mysql

    CDC 的全称是 Change Data Capture ,在广义的概念上,只要是能捕获数据变更的技术,我们都可以称之为 CDC 。目前通常描述的 CDC 技术主要面向数据库的变更,是一种用于捕获数据库中数据变更的技术。 mysqlcdc需要mysql开启binlog,找到my.cnf,在 [mysqld] 中加入如下信息 [mysqld]

    2024年02月12日
    浏览(47)
  • Flink CDC 基于mysql binlog 实时同步mysql表

    环境说明: flink 1.15.2 mysql 版本5.7    注意:需要开启binlog,因为增量同步是基于binlog捕获数据 windows11 IDEA 本地运行 先上官网使用说明和案例:MySQL CDC Connector — Flink CDC documentation 1. mysql开启binlog (注意,引擎是 InnoDB,如果是ndbcluster,本人测试是捕获不到binlog日志的,增量相

    2024年02月10日
    浏览(60)
  • Flink CDC 基于mysql binlog 实时同步mysql表(无主键)

    环境说明: flink 1.15.2 mysql 版本5.7    注意:需要开启binlog,因为增量同步是基于binlog捕获数据 windows11 IDEA 本地运行 具体前提设置,请看这篇,包含 binlog 设置、Maven...... Flink CDC 基于mysql binlog 实时同步mysql表_彩虹豆的博客-CSDN博客 经过不懈努力,终于从阿里help页面找到了支

    2024年02月08日
    浏览(47)
  • 掌握实时数据流:使用Apache Flink消费Kafka数据

            导读:使用Flink实时消费Kafka数据的案例是探索实时数据处理领域的绝佳方式。不仅非常实用,而且对于理解现代数据架构和流处理技术具有重要意义。         Apache Flink  是一个在 有界 数据流和 无界 数据流上进行有状态计算分布式处理引擎和框架。Flink 设计旨

    2024年02月03日
    浏览(80)
  • Flink CDC2.4 整库实时同步MySql 到Doris

            Flink 1.15.4          目前有很多工具都支持无代码实现Mysql - Doris 的实时同步         如:SlectDB 已发布的功能包                 Dinky SeaTunnel TIS 等等          不过好多要么不支持表结构变动,要不不支持多sink,我们的业务必须支持对表结构的实时级变动

    2024年02月11日
    浏览(57)
  • 基于大数据平台(XSailboat)的计算管道实现MySQL数据源的CDC同步--flink CDC

    笔者在先前的一篇文档《数据标签设计 – 大数据平台(XSailboat)的数据标签模块》 提到了关于数据标签的模块,现已实现并应用于项目中。在项目中遇到这样一种情形: 如果打标信息和业务数据是在一个数据库实例中,那么只需要连接两张表进行查询即可。但是数据标签作为

    2024年01月17日
    浏览(67)
  • Flink CDC 基于Oracle log archiving 实时同步Oracle表到Mysql

    环境说明: flink 1.15.2 Oracle 版本:Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production mysql 版本:5.7 windows11 IDEA 本地运行 先上官网使用说明和案例:Oracle CDC Connector — Flink CDC documentation 1. Oracle 开启 log archiving (1).启用 log archiving         a:以DBA用户连接数据库    

    2024年02月11日
    浏览(47)
  • 【实战-01】flink cdc 实时数据同步利器

    cdc github源码地址 cdc官方文档 对很多初入门的人来说是无法理解cdc到底是什么个东西。 有这样一个需求,比如在mysql数据库中存在很多数据,但是公司要把mysql中的数据同步到数据仓库(starrocks), 数据仓库你可以理解为存储了各种各样来自不同数据库中表。 数据的同步目前对

    2023年04月08日
    浏览(55)
  • Flink CDC 实时抽取 Oracle 数据-排错&调优

    Flink CDC 于 2021 年 11 月 15 日发布了最新版本 2.1,该版本通过引入内置 Debezium 组件,增加了对 Oracle 的支持。对该版本进行试用并成功实现了对 Oracle 的实时数据捕获以及性能调优,现将试用过程中的一些关键细节进行分享。 Oracle:11.2.0.4.0(RAC 部署) Flink:1.13.1 Hadoop:3.2.1

    2024年01月16日
    浏览(46)
  • Flink CDC实时同步PG数据库

    JDK:1.8 Flink:1.16.2 Scala:2.11 Hadoop:3.1.3 github地址:https://github.com/rockets0421/FlinkCDC-PG.git  1、更改配置文件postgresql.conf # 更改wal日志方式为logical wal_level = logical # minimal, replica, or logical # 更改solts最大数量(默认值为10),flink-cdc默认一张表占用一个slots max_replication_slots = 20 # m

    2024年02月13日
    浏览(69)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包