ChatGPT基础知识系列之零次学习( Zero-Short learning)
顾名思义,在训练分类器的时候可以不需要A类物体样本就能在测试时识别A类物体,咋一看,很玄乎,其实并没有。在具体解释思路之前,先回顾一下大家比较熟悉的word2vec,就是把单词变成一个向量(语义向量),就可以数字化送进神经网络了。意思相近的单词的语义向量也会比较相似。
零样本学习 Zero-Shot Learning,简称 ZSL,是由 Lampert 等人在 2009 年提出的。他们提供了一个 Animals with Attributes 数据集以及经典的基于属性的学习算法,开启了这一机器学习新方法。从原理上来说,ZSL 就是让计算机模拟人类的推理方式,来识别从未见过的新事物。之所以独立出来,是因为它解决问题的思路不同于传统的机器学习方法。文章来源:https://www.toymoban.com/news/detail-402154.html
我们用小明找斑马的经典例子。某个周末,爸爸带小明到动物园玩,看到了马,爸爸告诉他,这是马。之后,又看到了老虎,告诉他: **看,这种身上有条纹的家伙就是老虎。**最后,又带他去看了熊猫,对他说: **你看这熊猫是黑白色的。**然后,爸爸给小明安排了一个任务,让他在动物园里找一种叫斑马的动物。由于小明没有见过斑马,于是爸爸给他讲了一下斑马的大概情况: **斑马形状像马,身上有像老虎一样的条纹,而且它像熊猫一样是黑白色的。**结果,根据爸爸的描述,小明在动物园里轻松地找到了斑马。文章来源地址https://www.toymoban.com/news/detail-402154.html
到了这里,关于ChatGPT基础知识系列之零样本学习( Zero-Short learning)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!