机器学习——鸢尾花数据集

这篇具有很好参考价值的文章主要介绍了机器学习——鸢尾花数据集。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

鸢尾花数据集即iris
iris数据集文件: https://pan.baidu.com/s/1saL_4Q9PbFJluU4htAgFdQ .提取码:1234

数据集简介

  • 数据集包含150个样本(数据集的行)
  • 数据集包含4个属性(数据集的列):Sepal Length,Sepal Width,Petal Length,Petal Width:‘feature_names’
  • 利用numpy.ndarray存储这150x4的数据:‘data’
  • 分类标签取自array[‘Setosa’,‘Versicolour’,‘Virginica’]:‘target_names’
    Setosa,Versicolour,Virginica是数据集所包含的3中品种的鸢尾花
    这3个分类标签(即150x1数据)用np.ndarray存储:‘target’
    总之,这个数据存储了150x4的特征数据和150x1的分类标签,其中特征数据又放在‘data’里,分类标签放在‘target’里

导入数据集

import matplotlib.pyplot as plt    #绘图
from mpl_toolkits.mplot3d import Axes3D   #可视化
from sklearn import datasets    #sklearn中包含很多数据集,其中就有鸢尾花数据集
from sklearn.decomposition import PCA    #主成分分析
import numpy as np   #机器学习中通常将数据以数组的形式存储,特别是这里包含了特征数据和分类数据

iris = datasets.load_iris()   #利用load函数装载数据集

print('鸢尾花数据集的数据类型是:',type(iris))  
  
print('鸢尾花数据集的数据有:',dir(iris))
for i in dir(iris):
	eval('print(i,"/t",type(iris.'+i+'))')   #遍历数据集中的数据,查看每个数据的数据类型
print()    

print('鸢尾花数据集中feature_names取值:',iris.feature_names)
print('鸢尾花数据集中数据的行列数:',iris.data.shape)
print('鸢尾花数据集中target取值:',np.unique(iris.target))
print('鸢尾花数据集中target_names的取值:',iris.target_names)   

结果:机器学习——鸢尾花数据集

可视化

figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True)

  • num:图像编号或名称,数字为编号 ,字符串为名称
  • figsize:指定figure的宽和高,单位为英寸;
  • dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80 1英寸等于2.5cm,A4纸是 21*30cm的纸张
  • facecolor:背景颜色
  • edgecolor:边框颜色
  • frameon:是否显示边框

matplotlib中cla/clf/close用法及相关清除效果文章来源地址https://www.toymoban.com/news/detail-402175.html

  • 在使用matplotlib画图时,画完图之后需要进行一定的清理工作,否则后续画图的结果中可能混入前一幅图的数据,或者造成频繁创建绘图对象。下面解释一下matplotlib中的相关清理操作和效果。主要包括以下方法:
    • gca获取当前的axes,cla清理当前的axes
    • gcf获取当前的figure,clf清理当前的figure
    • close,关闭figur

到了这里,关于机器学习——鸢尾花数据集的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习】鸢尾花分类-逻辑回归示例

    功能: 这段代码演示了如何使用逻辑回归对鸢尾花数据集进行训练,并将训练好的模型保存到文件中。然后,它允许用户输入新的鸢尾花特征数据,使用保存的模型进行预测,并输出预测结果。 步骤概述: 加载数据和预处理: 使用 Scikit-Learn 中的 datasets 模块加载鸢尾花数据

    2024年02月10日
    浏览(42)
  • 【机器学习】KNN算法-鸢尾花种类预测

    K最近邻(K-Nearest Neighbors,KNN)算法是一种用于模式识别和分类的简单但强大的机器学习算法。它的工作原理非常直观:给定一个新数据点,KNN算法会查找离这个数据点最近的K个已知数据点,然后基于这K个最近邻数据点的类别来决定新数据点的类别。简而言之,KNN算法通过周

    2024年02月07日
    浏览(41)
  • 机器学习-KNN算法(鸢尾花分类实战)

    前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 K近邻(K Nearest Neighbors,KNN)算法是最简单的分类算法之一,也就是根据现有训练数据判断输入样本是属于哪一个类别。 “近朱者赤近墨者黑\\\",所谓的K近邻,也就

    2023年04月08日
    浏览(71)
  • 机器学习与深度学习——通过knn算法分类鸢尾花数据集iris求出错误率并进行可视化

    什么是knn算法? KNN算法是一种基于实例的机器学习算法,其全称为K-最近邻算法(K-Nearest Neighbors Algorithm)。它是一种简单但非常有效的分类和回归算法。 该算法的基本思想是:对于一个新的输入样本,通过计算它与训练集中所有样本的距离,找到与它距离最近的K个训练集样

    2024年02月03日
    浏览(41)
  • 机器学习:KNN算法对鸢尾花进行分类

    1.算法概述 KNN(K-NearestNeighbor)算法经常用来解决分类与回归问题, KNN算法的原理可以总结为\\\"近朱者赤近墨者黑\\\",通过数据之间的相似度进行分类。就是通过计算测试数据和已知数据之间的距离来进行分类。 如上图,四边形代表测试数据,原型表示已知数据,与测试数据最

    2024年02月09日
    浏览(52)
  • 机器学习实验3——支持向量机分类鸢尾花

    基于鸢尾花数据集,完成关于支持向量机的分类模型训练、测试与评估。 代码 认识数据 属性:花萼长度,花萼宽度,花瓣长度,花瓣宽度 分类:Setosa,Versicolour,Virginica 相关性分析 如下图,可以直观看到花瓣宽度(Petal Width)和花瓣长度(Petal Length)存在很高的正相关性,

    2024年01月24日
    浏览(38)
  • 机器学习与深度学习——通过SVM线性支持向量机分类鸢尾花数据集iris求出错误率并可视化

    先来看一下什么叫数据近似线性可分,如下图所示,蓝色圆点和红色圆点分别代表正类和负类,显然我们不能找到一个线性的分离超平面将这两类完全正确的分开;但是如果将数据中的某些特异点(黑色箭头指向的点)去除之后,剩下的大部分样本点组成的集合是线性可分的,

    2023年04月18日
    浏览(63)
  • 机器学习(四):4层BP神经网络(只用numpy不调包)用于训练鸢尾花数据集|准确率96%

    题目: 设计四层BP网络,以g(x)=sigmoid(x)为激活函数, 神经网络结构为:[4,10,6, 3],其中,输入层为4个节点,第一个隐含层神经元个数为10个节点;第二个隐含层神经元个数为6个节点,输出层为3个节点 利用训练数据iris-train.txt对BP神经网络分别进行训练,对训练后的模型统

    2023年04月08日
    浏览(38)
  • 初识机器学习——感知机(Perceptron)+ Python代码实现鸢尾花分类

      假设输入空间 χ ⊆ R n chisubseteq R^n χ ⊆ R n ,输出空间为 γ = { + 1 , − 1 } gamma=left { +1,-1right } γ = { + 1 , − 1 } 。其中每一个输入 x ⊆ χ xsubseteq chi x ⊆ χ 表示对应于实例的特征向量,也就是对应于输入空间(特征空间)的一个点, y ⊆ γ ysubseteq gamma y ⊆ γ 输出表

    2023年04月08日
    浏览(50)
  • 机器学习01 -Hello World(对鸢尾花(Iris Flower)进行训练及测试)

    机器学习是一种人工智能(AI)的子领域,它探索和开发计算机系统,使其能够从数据中学习和改进,并在没有明确编程指令的情况下做出决策或完成任务。 传统的程序需要程序员明确编写指令来告诉计算机如何执行特定任务。但是,机器学习采用不同的方法。它允许计算机

    2024年02月15日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包