神经网络数据增强transforms的相关操作(持续更新)

这篇具有很好参考价值的文章主要介绍了神经网络数据增强transforms的相关操作(持续更新)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


日志:
        2022.6.18:加入transforms.TenCrop()

一、图像的相关变化

1、格式转换

(1)transforms.ToTensor()

可将PIL格式、数组格式转换为tensor格式

img_path = "E:\expression_recognition\\2.jpg"
img = Image.open(img_path)  # #数组类型PIL类型都可
a1 = transforms.ToTensor()
img_tensor = (img)

(2)transforms.ToPILImage()

tensor格式 或者 数组类型的数据转换为 PIL 格式

img_path="E:\expression_recognition\\1.jpg"
img = Image.open(img_path)
img_array = numpy.array(img)
a1 = transforms.ToTensor()
img_tensor = a1(img)

# 1、数组转换为PIL格式
a2 = transforms.ToPILImage()
img_array = numpy.uint8(img_array)  # 满足类型需求
img_PIL = a2(img_array)

# 2、tensor转换为PIL格式
img_tensor = img_tensor.float()  # 满足类型需求
img_PIL = a2(img_tensor)

(3)transforms.Normalize()

注意该操作只能对tensor格式进行操作,因此放transforms.ToTensor()之后
对图像进行标准化处理

括号中的值 transforms.Resize()
mean,std 以三通道为例:[0.5,0.5,0.5],[0.5,0.5,0.5]

2、图像大小和颜色变换

(1)transforms.Resize()

可对tensor类型,PIL类型进行缩放,不可对数组类型进行缩放

括号中的值 transforms.Resize()
W 图片缩放为(W*W)
(H,W) 图片缩放为(H*W)
a = transforms.Resize([256,512])   # [H,W]
img_resize = a2(img)
img_resize.show()

神经网络数据增强transforms的相关操作(持续更新)

(2)transforms.ColorJitter()

可对tensor类型,PIL类型进行修改,不可对数组类型进行修改

括号中的值 transforms.ColorJitter(brightness, contrast, saturation, hue)
brightness 亮度
contrast 对比度
saturation 饱和度
hue 色调
a3 = transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
img_colorjitter = a3(img)
img_colorjitter.show()

左端原图,右端变换完的图
神经网络数据增强transforms的相关操作(持续更新)

(3)transforms.Grayscale()和transforms.RandomGrayscale()

可对tensor类型,PIL类型进行修改,不可对数组类型进行修改

功能
transforms.Grayscale() 将图像变为灰度图像
transforms.RandomGrayscale() 将图像随机变为灰度图像
a4 = transforms.Grayscale(num_output_channels=1)
img_grayscale = a4(img)
img_grayscale.show()
a5 = transforms.RandomGrayscale(p=0.1)
img_randomgrayscale = a5(img)
img_randomgrayscale.show()
神经网络数据增强transforms的相关操作(持续更新)

3、图像的裁剪与旋转

(1)随机裁剪transforms.RandomCrop()

可对tensor类型,PIL类型进行修改,不可对数组类型进行修改
随机裁剪有很多参数,但是目前用到的只有这一种参数

参数 功能
size 按照所给的size大小进行裁剪,size可以是(h,w)或直接是w
import matplotlib.pyplot as plt
# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

a6 = transforms.RandomResizedCrop((124,124))
a7 = transforms.RandomResizedCrop(256)
img_randomresizedcrop1 = a6(img)
img_randomresizedcrop2 = a7(img)
plt.subplot(1,3,1),plt.imshow(img),plt.title("原图")
plt.subplot(1,3,2),plt.imshow(img_randomresizedcrop1),plt.title("转换后的图1")
plt.subplot(1,3,3),plt.imshow(img_randomresizedcrop2),plt.title("转换后的图2")
plt.show()
神经网络数据增强transforms的相关操作(持续更新)

(2)中心裁剪transforms.CenterCrop()

可对tensor类型,PIL类型进行修改,不可对数组类型进行修改
与随机裁剪基本一样,只不过是从中心进行裁剪

参数 功能
size 按照所给的size大小进行中心裁剪,size可以是(h,w)或直接是w
神经网络数据增强transforms的相关操作(持续更新)

(3)随机长宽比裁剪transforms.RandomResizedCrop()

可对tensor类型,PIL类型进行修改,不可对数组类型进行修改
主要用到以下两个参数:

参数 功能
size 输出的分辨率大小
scale 随机crop的大小区间,如scale=(0.8, 1.0)(前面是h的倍数,后面是w的倍数),表示随机crop出来的图片会在的0.8倍至1倍之间
import matplotlib.pyplot as plt
# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

a6 = transforms.RandomResizedCrop((64,128), scale=(0.08, 1.0))
img_randomresizedcrop = a6(img)
plt.subplot(1,2,1),plt.imshow(img),plt.title("原图")
plt.subplot(1,2,2),plt.imshow(img_randomresizedcrop),plt.title("转换后的图")
plt.show()
神经网络数据增强transforms的相关操作(持续更新)

(4)10次裁剪transforms.TenCrop()

裁剪图片的中间部分和四个角并进行翻转得到四张图片(默认水平翻转)

参数 功能
size 裁剪图片的大小
vertical_flip 是否垂直翻转

默认采用水平翻转,第一张为原图

a7 = transforms.TenCrop(224)
img1 = a7(img)
plt.figure(figsize=(20,18))
plt.subplot(3,4,1),plt.imshow(img),plt.title(1)
for i in range(0,10):
    plt.subplot(3,4,i+2),plt.imshow(img1[i]),plt.title(str(i+1))
plt.show()
神经网络数据增强transforms的相关操作(持续更新)

采用垂直翻转,第一张为原图

a8 = transforms.TenCrop(224,vertical_flip=True)
img2 = a8(img)
plt.figure(figsize=(20,18))
plt.subplot(3,4,1),plt.imshow(img),plt.title(0)
for i in range(0,10):
    plt.subplot(3,4,i+2),plt.imshow(img2[i]),plt.title(str(i+1))
plt.show()
神经网络数据增强transforms的相关操作(持续更新)

(5)概transforms.RandomHorizontalFlip()

可对tensor类型,PIL类型进行修改,不可对数组类型进行修改

import matplotlib.pyplot as plt
# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

a7 = transforms.RandomHorizontalFlip(p=0.5)
img_randomhorizontalflip = a7(img)
plt.subplot(1,2,1),plt.imshow(img),plt.title("原图")
plt.subplot(1,2,2),plt.imshow(img_randomhorizontalflip),plt.title("翻转后的图")
plt.show()
参数 功能
p 随机水平翻转的概率
神经网络数据增强transforms的相关操作(持续更新)

(6)概率垂直翻转transforms.RandomVerticalFlip()

可对tensor类型,PIL类型进行修改,不可对数组类型进行修改

参数 功能
p 随机垂直翻转的概率
import matplotlib.pyplot as plt
# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

a7 = transforms.RandomVerticalFlip(p=0.5)
img_randomverticalflip = a7(img)
plt.subplot(1,2,1),plt.imshow(img),plt.title("原图")
plt.subplot(1,2,2),plt.imshow(img_randomverticalflip),plt.title("翻转后的图")
plt.show()
神经网络数据增强transforms的相关操作(持续更新)

(7)随机旋转:transforms.RandomRotation()

可对tensor类型,PIL类型进行修改,不可对数组类型进行修改

参数 功能
70 旋转范围为:(-70,70)
(30,60) 旋转范围为:(30,60)
import matplotlib.pyplot as plt
# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

a7 = transforms.RandomRotation((30,50))
img_randomrotation = a7(img)
plt.subplot(1,2,1),plt.imshow(img),plt.title("原图")
plt.subplot(1,2,2),plt.imshow(img_randomrotation),plt.title("随机旋转后的图")
plt.show()
神经网络数据增强transforms的相关操作(持续更新)

4、transforms.Compose([])

transforms.Compose是将上述数据变换包装起来依次执行。另外有不对的地方望指出。文章来源地址https://www.toymoban.com/news/detail-402696.html

到了这里,关于神经网络数据增强transforms的相关操作(持续更新)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于卷积神经网络的立体视频编码质量增强方法_余伟杰

    提出的网络包含两个模块:特征提取模块和重建模块。 为了从低质量合成视点中提取局部和全局信息,特征提取模块中提出了两条信息流,分别为 局部信息提取流和全局信息提取流 。 随着网络层数的增长,提取的特征在传输的过程中可能消失,这会降低网络模型的表达能力

    2024年02月01日
    浏览(35)
  • [全连接神经网络]Transformer代餐,用MLP构建图像处理网络

            使用纯MLP处理图像信息,其原理类似vit,将图片进行分块(patch)后展平(fallten),然后输入到MLP中。理论上MLP等价于1x1卷积,但实际上1x1卷积 仅能结合通道信息 而不能结合空间信息。根据结合的信息不同分为channel-mixing MLPs和token-mixing MLPs。        总体结构如下图

    2024年01月21日
    浏览(47)
  • 增强型PID-自适应-前馈-神经网络控制研究(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 2.1 RBFNN_Optimized_hideen_node_20 ​2.2 RBFNN_Lat

    2024年02月01日
    浏览(54)
  • 再见卷积神经网络,使用 Transformers 创建计算机视觉模型

    本文旨在介绍 / 更新 Transformers 背后的主要思想,并介绍在计算机视觉应用中使用这些模型的最新进展。 读完这篇文章,你会知道…… 为什么 Transformers 在 NLP 任务中的表现优于 SOTA 模型。 Transformer 模型的工作原理 这是卷积模型的主要限制。 Transformers 如何克服卷积模型的限

    2024年02月02日
    浏览(48)
  • 基于深度神经网络的3D模型合成【Transformer vs. CNN】

    本文介绍用于3D模型合成的transformer网络与深度卷积网络。 推荐:使用 NSDT场景设计器 快速搭建 3D场景。 从单一视角合成 3D 数据是一种基本的人类视觉功能,这对计算机视觉算法来说极具挑战性,这是一个共识。 但在 3D 传感器(如 LiDAR、RGB-D 相机(RealSense、Kinect)和 3D 扫描

    2024年02月07日
    浏览(67)
  • 【学习笔记】神经网络相关

    人工神经网络(Artificial Neural Network,ANN)常简称为神经网络(Neural Network,NN),它是一种通过数学模型来模拟生物大脑神经网络以及生物大脑功能的技术。 1943年,心理学家McCulloch和数学家Pitts提出了MP模型。该模型将一个生物神经元的结构简化成数学模型。 单个MP模型可以

    2024年01月16日
    浏览(44)
  • 神经网络学习笔记10——RNN、ELMo、Transformer、GPT、BERT

    参考博客1 参考博客2 一、NLP(自然语言处理)是什么 自然语言处理(Natural Language Processing,简称NLP)是用计算机来处理、理解以及运用人类语言(如字符、中文、英文等),它属于人工智能的一个分支,是计算机科学与语言学的交叉学科,又常被称为计算语言学。人类语言是抽

    2024年04月09日
    浏览(43)
  • 深入了解Transformer:从编码器到解码器的神经网络之旅

    自2017年问世以来,Transformer模型在自然语言处理(NLP)领域引发了一场革命。它的独特设计和高效性能使其成为了解决复杂语言任务的关键工具。 (1)自注意力机制 Transformer的核心在于自注意力机制。它允许模型在处理每个词时考虑句子中的所有其他词,从而有效捕获长距离依

    2024年01月17日
    浏览(53)
  • Python使用pytorch深度学习框架构造Transformer神经网络模型预测红酒分类例子

    经典的红酒分类数据集是指UCI机器学习库中的Wine数据集。该数据集包含178个样本,每个样本有13个特征,可以用于分类任务。 具体每个字段的含义如下: alcohol:酒精含量百分比 malic_acid:苹果酸含量(克/升) ash:灰分含量(克/升) alcalinity_of_ash:灰分碱度(以mEq/L为单位)

    2024年02月02日
    浏览(45)
  • 深度学习与计算机视觉的新技术:从卷积神经网络到Transformer

    深度学习是一种人工智能技术,它旨在模拟人类大脑中的神经网络,以解决复杂的问题。计算机视觉是人工智能的一个分支,旨在让计算机理解和解析人类视觉系统中的图像和视频。深度学习与计算机视觉的结合,使得计算机在处理图像和视频方面具有强大的能力。 在过去的

    2024年02月02日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包