ChatGPT +工业机器人/自动驾驶控制器的一些尝试

这篇具有很好参考价值的文章主要介绍了ChatGPT +工业机器人/自动驾驶控制器的一些尝试。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

ChatGPT 的功能目前已扩展到机器人领域,可以用语言直观控制如机械臂、无人机、家庭辅助机器人等的多个平台。这会改变人机交互的未来形式吗?

你可曾想过用自己的话告诉机器人该做什么,就像对人说话那样?

比如说,只要告诉你的家庭助理机器人「请帮我热一下午餐」,然后它就能自己找到微波炉。很神奇,对吗?

尽管语言是人类表达意图的最直观的方式,但此前很长一段时间,人们仍然严重依赖手写代码来实现对机器人的控制。不过,当 ChatGPT 出现之后,这种情况要变一下了。

在最近的一项研究中,微软团队在探索如何使用 OpenAI 的新 AI 语言模型 ChatGPT 来使自然的人机交互成为可能。

ChatGPT +工业机器人/自动驾驶控制器的一些尝试

论文链接:
https://www.microsoft.com/en-us/research/uploads/prod/2023/02/ChatGPT___Robotics.pdf

ChatGPT 是一个在大量文本和人类互动语料库上训练的语言模型,因此应对广泛的 prompt 和问题时,它可以生成连贯且语法正确的响应。这项研究的目标是看看 ChatGPT 是否可以超越文本思考,并对现实世界进行推理,以帮助机器人完成任务。研究者希望以此便利人们与机器人的互动,而不需要学习复杂的编程语言或机器人系统的细节。

研究的关键挑战在于教会 ChatGPT:如何通过考虑物理定律、操作环境以及机器人运用肢体动作改变周遭环境的方式来解决问题。

事实证明,ChatGPT 本身可以做很多事情,但它仍然需要一些帮助。团队在论文中描述了一系列可用于指导语言模型解决机器人任务的设计原则,包括(但不限于)特别 prompt 结构、高级 API 和通过人类文本反馈。研究者认为,这项工作只是开发机器人系统的转变的开始,并且希望通过这项研究激励其他研究人员加入这个有趣的研究领域。

当今机器人技术面临的挑战,以及 ChatGPT 能提供的帮助

目前机器人的操作流是从工程师或技术用户开始,需要他们将任务需求转换为系统代码。工程师会处于工作流程的回路中,他们需要不断编写新的代码和规范来纠正机器人的行为。总得来说,这个过程是缓慢的(用户需要编写低级代码)、昂贵的(需要对机器人技术有深入了解的高技能用户)且低效的(需要多次交互才能正常运转)。

ChatGPT +工业机器人/自动驾驶控制器的一些尝试

但 ChatGPT 开启了一种新的机器人范式,并允许潜在的非技术型用户参与到回路之中,在监视机器人性能的同时向大型语言模型(LLM)提供高级反馈。通过遵循研究的设计原则,ChatGPT 可以为机器人场景生成代码。在没有任何微调的情况下,研究利用 LLM 的知识来控制不同的机器人形状,以完成各种任务。工作中,研究人员展示了多个 ChatGPT 解决机器人难题的示例,以及在操作、空中和导航领域的复杂机器人部署。

机器人与 ChatGPT:设计原则

Prompting LLM 是一门高度实证的科学。研究通过反复试验建立了一套为机器人任务编写 prompt 的方法和设计原则:

ChatGPT +工业机器人/自动驾驶控制器的一些尝试

首先,研究定义了一组高级机器人 API 或函数库。这个库可以特定于特定的机器人,并且可以映射到机器人的控制堆栈或感知库中现有的低级实现。对高级 API 使用描述性名称非常重要,这样 ChatGPT 就可以推断它们的行为;

接下来,研究人员为 ChatGPT 编写一个文本 prompt,它描述了任务目标,同时明确说明来自高级库的哪些函数是可用的。Prompt 还可以囊括关于任务约束的信息,或者 ChatGPT 应该如何形成其答案(特定的编码语言,使用辅助解析元素);

用户在回路中评估 ChatGPT 的代码输出,要么通过直接检查,要么使用模拟器。如果需要,用户可以使用自然语言向 ChatGPT 反馈答案的质量和安全性。

用户满意解决方案的话,代码就可以最终部署到机器人上。

理论已经够多了,ChatGPT 到底能做什么?

让我们参看几个例子,你还可以在代码库中找到更多案例研究。

零样本任务计划

研究人员让 ChatGPT 控制真正的无人机,经证明,它是非技术用户和机器人之间非常直观的基于语言的接口。当用户的指令含糊不清时,ChatGPT 会提出要明晰问题,并为无人机编写复杂的代码结构以直观地检查架构,例如锯齿形模式。它甚至学会了自拍!

ChatGPT +工业机器人/自动驾驶控制器的一些尝试

ChatGPT +工业机器人/自动驾驶控制器的一些尝试

研究人员还使用 Microsoft AirSim 模拟器在一个模拟工业检验场景中使用 ChatGPT。该模型能够有效地解析用户的高级意图和几何线索,从而准确地控制无人机。

ChatGPT +工业机器人/自动驾驶控制器的一些尝试

ChatGPT +工业机器人/自动驾驶控制器的一些尝试

回路中的用户:当复杂的任务需要对话时

接下来,研究人员将 ChatGPT 用于机械臂的操作场景,并使用对话反馈来教会模型如何将最初提供的 API 组合成更复杂的高级函数:ChatGPT 自动编程。该模型能够使用课程本位策略,按照逻辑将学习到的技能链接在一起,以执行诸如堆叠块等操作。

此外,当用木块构建微软标志时,该模型展示了一个连接文本和物理域的完美示例。它不仅能够从内部知识库中回忆 logo,还能够「绘制」logo(作为 SVG 代码),然后使用上面学到的技能来找出哪些现有的机器人动作可以构成其外形。

ChatGPT +工业机器人/自动驾驶控制器的一些尝试

接下来,研究人员让 ChatGPT 编写一个算法,让无人机在达到空中目标的同时不撞上障碍物。他们告诉模型,这架无人机有一个面向前方的距离传感器,ChatGPT 立即为算法编写了大部分关键构建块。这项任务需要与人进行一些对话,ChatGPT 仅使用语言反馈就能进行本地化代码改进的能力令人印象深刻。

感知 - 行动回路:机器人在行动前感知世界

在做某事(行动)之前感知世界(感知)的能力是任何机器人系统的基础。因此,研究人员决定测试 ChatGPT 对这个概念的理解,并要求它探索一个环境,直到找到用户指定的对象。研究为模型提供了对象检测和对象距离 API 等功能,并验证了它生成的代码成功实现了感知 - 行动循环。

在实验阶段,研究者进行了额外的实验,以评估 ChatGPT 是否能够根据传感器反馈实时决定机器人应该去哪里(而不是让 ChatGPT 生成一个代码回路来做出这些决定)。有趣的是,恰好验证了可以在对话的每一步中输入相机图像的文本描述,并且模型能够弄清楚如何控制机器人,直到它到达特定的对象。

PromptCraft, LLM + 机器人研究的协作开源工具

良好的 Prompt 工程对于大型语言模型的成功至关重要,例如 ChatGPT 用于机器人任务。可惜,Prompt 是一门实证科学,缺乏全面和可访问的资源,其中能为该领域的研究人员和爱好者提供帮助的例子也是良莠不齐。为了弥合这一差距,研究者引入了「PromptCraft」,这是一个协作开源平台,任何人在这里都可以分享不同机器人类别的 Prompt 策略示例,而且,研究者公布了在这项研究中使用的所有 Prompt 和对话。

除了 Prompt 设计,研究还希望包括多个机器人模拟器和界面,允许用户测试他们的 ChatGPT 生成的算法。作为开始,研究还发布了一个与 ChatGPT 集成的 AirSim 环境,任何人都可以使用它来展开这些想法。

ChatGPT +工业机器人/自动驾驶控制器的一些尝试

ChatGPT-AirSim 接口

让机器人走出实验室,走向世界

发布这些技术是一件值得庆祝的事,因为这会扩大机器人技术的受众面。微软的研究人员相信,基于语言的机器人控制将会为让机器人从科学实验室走进日常用户的生活中奠定基础。

本文要强调的是,在没有仔细分析的情况下,ChatGPT 的输出并不意味着要直接部署在机器人上。研究者鼓励用户利用模拟的力量,以便在潜在的现实生活部署之前评估这些算法,并始终采取必要的安全预防措施。本文所讲述的工作只代表了在机器人领域运行的大型语言模型的交集中可能实现的一小部分,希望能为更多的研究提供灵感。文章来源地址https://www.toymoban.com/news/detail-402908.html

到了这里,关于ChatGPT +工业机器人/自动驾驶控制器的一些尝试的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 5.【自动驾驶与机器人中的SLAM技术】2D点云的scan matching算法 和 检测退化场景的思路

    这里实现了基于g2o优化器的优化方法。 图优化中涉及两个概念-顶点和边。我们的优化变量认为是顶点,误差项就是边。我们通过g2o声明一个图模型,然后往图模型中添加顶点和与顶点相关联的边,再选定优化算法(比如LM)就可以进行优化了。想熟悉g2o的小伙伴们感兴趣的话

    2024年02月03日
    浏览(48)
  • 2023年第三届工业自动化、机器人与控制工程国际会议 | IET独立出版 | EI检索

    会议简介 Brief Introduction 2023年第三届工业自动化、机器人与控制工程国际会议(IARCE 2023) 会议时间:2023年10月27 -30日 召开地点:中国·成都 大会官网:www.iarce.org 2023年第三届工业自动化、机器人与控制工程国际会议(IARCE 2023)将围绕“工业自动化、机器人与控制工程”的最

    2024年02月14日
    浏览(56)
  • 高翔:《自动驾驶与机器人中的SLAM技术 》-Slam_in_autonomous_driving 编译过程中遇到的问题

    使用的环境是ubuntu20.04 问题1.安装g2o没有问题,不过在编译整个项目工程时候报错: ”openmp_mutex.h: 30:10: fatal error: g2o/config.h: No such file or directory“: 解决办法: 问题2. No rule to make target ’gmock’,needed by \\\'../bin/test_preintegration\\\' . stop src/ch4/CMakeFiles/test_preintegration.dir/all] Error 2:

    2024年02月03日
    浏览(42)
  • 【ChatGLM vs ChatGPT】怎样实现机器人自动写代码?不少于3000字。

       图:a robot is writing code, by Stable Diffusion 禅与计算机程序设计艺术: 总体来看,ChatGLM(6B)和 ChatGPT(175B)在技术领域的问答情况表现都很出色,考虑到模型参数和成本,整体看在这方面的表现  ChatGLM 优于 ChatGPT 。 目录 怎样实现机器人自动写代码?不少于3000字。

    2024年02月01日
    浏览(38)
  • 【机器人仿真Webots教程】-控制器编程指南

    1.1 controller与场景树节点 在Webots中,场景树节点(Scene Tree Nodes)是Webots仿真环境中的各种对象,包括机器人模型、传感器、环境物体等。每个节点都有其在场景树中的位置,节点之间可以形成层次结构,以便组织和管理模拟环境。 控制器程序(Controller Program)是用于控制机

    2024年02月06日
    浏览(48)
  • 如何用JS写一套钉钉的机器人自动回复,要求调用chatgpt

    请注意,本文由chatgpt 3.5完成,请自行验证该回答的严谨性。 为了用JS编写一套钉钉机器人自动回复,调用ChatGPT,可以按照以下步骤: 创建一个钉钉机器人:在钉钉开放平台上创建一个机器人,并获取机器人的Webhook地址和密钥。 安装必要的依赖:使用Node.js环境,在项目根目

    2024年02月02日
    浏览(45)
  • 基于ROS实现的机器人运动PID控制器

    下面是一个基于ROS实现的机器人运动PID控制器的例子: 首先,需要定义机器人的运动控制器节点,例如: 其中, cmd_vel_pub 是一个发布器,用于发布机器人的运动控制指令; odom_sub 是一个订阅器,用于接收机器人的里程计信息。 然后,需要实现一个PID控制器的类,例如: 其

    2024年02月13日
    浏览(54)
  • 如何将电机控制器添加到您的 ROS 机器人

            如果您正在构建与 ROS/ROS2 一起使用的移动机器人,您需要做的第一件事就是集成电机控制器。电机控制器的目的是接受来自更高级别的软件(如导航堆栈)的消息,并将其转换为驱动电机的信号。它还将从电机的编码器接收信息,以计算机器人的速度和位置。 您

    2024年02月15日
    浏览(52)
  • 基于ARM+FPGA的驱控一体机器人控制器设计

    目前市场上工业机器人,数控机床等多轴运动控制系统普遍采用运动控制器加 伺服驱动器的分布式控制方式。在这种控制方式中,控制器一方面完成人机交互,另 一方面进行 NC 代码的解释执行,插补运算,继而将计算出来的位置指令通过轴组模 块下发给各个伺服驱动器。下

    2024年02月14日
    浏览(52)
  • 面向低成本巡线机器人的PID控制器优化——附源码

    目录 介绍 测试 电子元器件 系统特征 控制器设计 位置误差的计算 比例控制 积分控制 微分控制 改进的PID控制器 测试轨迹 源码链接 本文对经典PID控制器的改进和开环控制机制的发展进行了讨论,以提高差动轮式机器人的稳定性和鲁棒性。为了部署该算法,使用低成本、现成

    2024年04月08日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包