1、如何理解神经网络里面的反向传播算法
反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。其主要思想是:
(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;
(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;
(3)在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。
反向传播算法的思想比较容易理解,但具体的公式则要一步步推导,因此本文着重介绍公式的推导过程。
1. 变量定义
上图是一个三层人工神经网络,layer1至layer3分别是输入层、隐藏层和输出层。如图,先定义一些变量:
表示第层的第个神经元连接到第层的第个神经元的权重;
表示第层的第个神经元的偏置;
表示第层的第个神经元的输入,即:
表示第层的第个神经元的输出,即:
其中表示激活函数。
2. 代价函数
代价函数被用来计算ANN输出值与实际值之间的误差。常用的代价函数是二次代价函数(Quadratic cost function):
其中,表示输入的样本,表示实际的分类,表示预测的输出,表示神经网络的最大层数。
3. 公式及其推导
本节将介绍反向传播算法用到的4个公式,并进行推导。如果不想了解公式推导过程,请直接看第4节的算法步骤。
首先,将第层第个神经元中产生的错误(即实际值与预测值之间的误差)定义为:
本文将以一个输入样本为例进行说明,此时代价函数表示为:
公式1(计算最后一层神经网络产生的错误):
其中,表示Hadamard乘积,用于矩阵或向量之间点对点的乘法运算。公式1的推导过程如下:
公式2(由后往前,计算每一层神经网络产生的错误):
推导过程:
公式3(计算权重的梯度):
推导过程:
公式4(计算偏置的梯度):
推导过程:
4. 反向传播算法伪代码
输入训练集
对于训练集中的每个样本x,设置输入层(Input layer)对应的激活值:
前向传播:
,
计算输出层产生的错误:
反向传播错误:
谷歌人工智能写作项目:小发猫
2、我现在在做RBF神经网络k-means算法与RLS递归二乘法结合训练,求哪位大神能给个RLS的算法的MTALAB程序 20
直接用广义RBF网络我感觉比较方便,而且可以直接用newgrnn(P,T,spread)函数神经网络训练乘法运算。
RLS算法的MATLAB程序在附件,你可以参考下。文章来源:https://www.toymoban.com/news/detail-403036.html
最小二乘大约是1795年高斯在他那星体运动轨道预报工作中提出的[1]。后来,最小二乘法就成了估计理论的奠基石。由于最小二乘法结构简单,编制程序也不困难,所以它颇受人们重视,应用相当广泛。
如用标准符号,最小二乘估计可被表示为:
AX=B (2-43)
上式中的解是最小化 ,通过下式中的伪逆可求得:
A'AX=A'B (2-44)
(A'A)^(-1)A'AX=(A'A文章来源地址https://www.toymoban.com/news/detail-403036.html
到了这里,关于神经网络训练算法的调用,神经网络中的矩阵运算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!