【leetcode刷题】66.使用最小花费爬楼梯——Java版

这篇具有很好参考价值的文章主要介绍了【leetcode刷题】66.使用最小花费爬楼梯——Java版。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

⭐欢迎订阅《leetcode》专栏,每日一题,每天进步⭐

我觉得这个题的描述应该改改:每个阶梯都有一定数量坨屎,一次只能跨一个或者两个阶梯,走到一个阶梯就要吃光上面的屎,问怎么走才能吃最少的屎?开局你选前两个阶梯的其中一个作为开头点,并吃光该阶梯的屎。

——leetcode此题热评

前言

哈喽,大家好,我是一条。

糊涂算法,难得糊涂

点击跳转到《糊涂算法》专栏学习java大厂面试必备数据结构和算法知识!

Question

746. 使用最小花费爬楼梯

难度:简单

数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。

每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。

请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。

示例 1:

输入:cost = [10, 15, 20]
输出:15
解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。
示例 2:

输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出:6
解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费 6 。

提示:

cost 的长度范围是 [2, 1000]。
cost[i] 将会是一个整型数据,范围为 [0, 999] 。

Solution

先回顾一下《爬楼梯》这个题

假如要到达某一层,只要考虑两件事:是从楼下走1层上来,还是从楼下的楼下跨2层上来。所以就有了 dp[i] = min(dp[i-1]+down, dp[i-2]+downdown)

Code

所有leetcode代码已同步至github

欢迎star

/**
 * @author 一条coding
 */
class Solution {
 public int minCostClimbingStairs(int[] cost) {
        int n=cost.length;
        int down=0;  int downdown=0;
        for(int i=2;i<=n;i++){
            int cur = Math.min(cost[i-1]+down,cost[i-2]+downdown);   // 到当前楼层两种路径消耗的体力最小值
            downdown=down;       //及时更新便于下一层循环,楼下就变成了楼下的楼下
            down=cur;      //当前楼层就变成了楼下
        }
        return down;  //本该返回cur,不过cur是局部变量,但到达当前楼层的体力值cur在循环里已经赋值给了down
    }
}

Result

复杂度分析

  • 时间复杂度:O(N)

【leetcode刷题】66.使用最小花费爬楼梯——Java版

🌈寻宝

⭐今天是坚持刷题更文的第66/100天

⭐各位的点赞、关注、收藏、评论、订阅就是一条创作的最大动力

⭐更多数据结构和算法讲解欢迎关注专栏《糊涂算法》

为了回馈各位粉丝,礼尚往来,给大家准备了一些学习资料

【leetcode刷题】66.使用最小花费爬楼梯——Java版

需要的小伙伴可以点「下方卡片👇👇👇关注后回复「算法」领取文章来源地址https://www.toymoban.com/news/detail-403197.html

到了这里,关于【leetcode刷题】66.使用最小花费爬楼梯——Java版的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LeetCode:509. 斐波那契数 && 70. 爬楼梯 && 746. 使用最小花费爬楼梯

    斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n 1 给定 n ,请计算 F(n) 。 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬

    2024年02月05日
    浏览(46)
  • 【手撕算法|动态规划系列No.3】leetcode746. 使用最小花费爬楼梯

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月12日
    浏览(63)
  • LeetCode 0746. 使用最小花费爬楼梯:动态规划(原地)——不用什么从递归到递推

    力扣题目链接:https://leetcode.cn/problems/min-cost-climbing-stairs/ 给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。 请你计算并返回达到楼

    2024年02月03日
    浏览(40)
  • 【LeetCode题目详解】第九章 动态规划part01 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯 (day38补)

    斐波那契数  (通常用  F(n) 表示)形成的序列称为 斐波那契数列 。该数列由  0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: 给定  n ,请计算 F(n) 。 示例 1: 示例 2: 示例 3: 提示: 0 = n = 30 斐波那契数列大家应该非常熟悉不过了,非常适合作为动规第

    2024年02月07日
    浏览(45)
  • 746. 使用最小花费爬楼梯

     

    2024年02月12日
    浏览(50)
  • 力扣 -- 746. 使用最小花费爬楼梯

    题目链接:746. 使用最小花费爬楼梯 - 力扣(LeetCode)  先分析题目:   这是一道动态规划的题,我们可以根据动态规划五部曲分析解答这道题。   参考代码:          这个动态规划的题难就难在分析上,如果能把它分析清楚,代码写起来就几行,如果没有画图分析,就

    2024年02月11日
    浏览(39)
  • 动态规划之使用最小花费爬楼梯

    题目链接选自力扣 : 使用最小花费爬楼梯 先根据示例 1 来理解一下题目的意思. 可以看到, 此时一共有两个起始位置 0 ,1. 并且这三个位置都对应了一定的费用 10, 15 当我们选择从某个地方开始想要向上走就得支付当前位置的费用才可以向上一格或者两格. 当前这个示例就是从

    2024年02月10日
    浏览(63)
  • 算法Day38 | 动态规划,509. 斐波那契数, 70. 爬楼梯, 746. 使用最小花费爬楼梯

    动态规划是一种解决问题的算法思想。它通常用于优化问题,其中要求找到一个最优解或最大化(最小化)某个目标函数。 动态规划的核心思想是 将问题分解成更小的子问题,并通过存储子问题的解来避免重复计算 。这样,可以通过解决子问题来构建原始问题的解。动态规

    2024年02月09日
    浏览(57)
  • 算法训练第三十八天|动态规划理论基础、509. 斐波那契数 、70. 爬楼梯 、 746. 使用最小花费爬楼梯

    参考:https://programmercarl.com/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html 动态规划是什么 动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。 所以 动态规划中每一个状态一定是由上一个状态推导出来的 ,这一

    2024年02月04日
    浏览(39)
  • 算法随想录第三十八天打卡| 理论基础 , 509. 斐波那契数, 70. 爬楼梯 , 746. 使用最小花费爬楼梯

     理论基础  无论大家之前对动态规划学到什么程度,一定要先看 我讲的 动态规划理论基础。  如果没做过动态规划的题目,看我讲的理论基础,会有感觉 是不是简单题想复杂了?  其实并没有,我讲的理论基础内容,在动规章节所有题目都有运用,所以很重要!   如果

    2024年01月18日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包