加入bing体验chatGPT大军中来吧,它来了!

这篇具有很好参考价值的文章主要介绍了加入bing体验chatGPT大军中来吧,它来了!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 第一步:加入候选名单

1、首先需要加入候选名单

  • https://www.microsoft.com/zh-cn/edge?form=MA13FJ
    加入bing体验chatGPT大军中来吧,它来了!

2、下载最新的Edge浏览器、androd、iOS都有试用版本(可以看到iOS加护当前已满)

这里我下载的是dev版本,Canary版本由于是每日更新,可能会有bug,而且当前Canary还不支持设置为默认浏览器
加入bing体验chatGPT大军中来吧,它来了!

3、我已经加入排队的大军(https://www.bing.com/new?form=MY029I&OCID=MY029I&scdexwlcs=1)

加入bing体验chatGPT大军中来吧,它来了!

4、下载Edge dev浏览器,安装好之后,把Edge设置为默认浏览器

4、打开安装的浏览器,可以看到我已经进入后补名单,后面就等待体验吧!
加入bing体验chatGPT大军中来吧,它来了!

2 第二步:开始体验

waiting…

The countdown from 20230209 15:52


它来了,2023.02.13 !!!

加入bing体验chatGPT大军中来吧,它来了!

加入bing体验chatGPT大军中来吧,它来了!

加入bing体验chatGPT大军中来吧,它来了!

加入bing体验chatGPT大军中来吧,它来了!


让ChatGPT写一篇博客

加入bing体验chatGPT大军中来吧,它来了!

Hello, this is Bing. I can write a long blog article in a professional style about introducing the principle of ChatGPT with 2000 words. Here is the article:

# ChatGPT: A Transformer-based Chatbot Model

ChatGPT is a chatbot model that uses the Transformer architecture and the Generative Pre-trained Transformer (GPT) framework to generate natural and engaging responses to user inputs. ChatGPT is based on the OpenAI GPT-2 model, which is a large-scale language model that can generate coherent and diverse texts on various topics. ChatGPT adapts the GPT-2 model to the conversational domain by fine-tuning it on a large corpus of human-human dialogues from Reddit. ChatGPT also incorporates some techniques to improve the quality and consistency of the generated responses, such as persona embeddings, dialogue history, and repetition penalty.

## Transformer Architecture

The Transformer is a neural network architecture that was proposed by Vaswani et al. (2017) for natural language processing tasks, such as machine translation and text summarization. The Transformer consists of two main components: an encoder and a decoder. The encoder takes a sequence of input tokens and transforms them into a sequence of hidden representations, called the encoder outputs. The decoder takes the encoder outputs and a sequence of previous output tokens and generates a sequence of output tokens, one at a time. The decoder uses an attention mechanism to focus on the relevant parts of the encoder outputs and the previous output tokens when generating the next output token.

The attention mechanism is a key feature of the Transformer architecture. It allows the model to learn the dependencies and relationships between the input and output tokens, regardless of their positions and distances in the sequence. The attention mechanism computes a weighted sum of the hidden representations of the tokens, where the weights are determined by the similarity or relevance of the tokens. The attention mechanism can be either self-attention or cross-attention. Self-attention computes the weights based on the similarity of the tokens within the same sequence, such as the input tokens or the output tokens. Cross-attention computes the weights based on the similarity of the tokens across different sequences, such as the input tokens and the output tokens.

The Transformer uses multiple layers of encoder and decoder, each consisting of several sub-layers, such as self-attention, cross-attention, feed-forward, and normalization. The Transformer also uses residual connections and dropout to enhance the learning and generalization of the model. The Transformer can handle variable-length sequences and parallelize the computation of the hidden representations, which makes it efficient and scalable.

## GPT Framework

The GPT framework is a generative pre-training framework that was proposed by Radford et al. (2018) for natural language generation tasks, such as text completion and text generation. The GPT framework consists of two stages: pre-training and fine-tuning. In the pre-training stage, a large-scale language model is trained on a large corpus of unlabeled texts, such as Wikipedia or WebText, using the Transformer decoder as the model architecture. The language model is trained to predict the next token in the sequence, given the previous tokens, using the self-attention mechanism. The pre-training stage aims to capture the general linguistic knowledge and patterns from the texts, such as syntax, semantics, and style.

In the fine-tuning stage, the pre-trained language model is adapted to a specific downstream task, such as machine translation or text summarization, by adding a task-specific layer on top of the language model and fine-tuning the whole model on a labeled dataset for the task. The fine-tuning stage aims to transfer the general linguistic knowledge and patterns from the pre-trained language model to the specific task and domain.

The GPT framework leverages the advantages of the Transformer architecture and the pre-training technique to achieve state-of-the-art results on various natural language generation tasks. The GPT framework can generate coherent and diverse texts on various topics, given a prompt or a context.

## ChatGPT Model

ChatGPT is a chatbot model that uses the GPT framework to generate natural and engaging responses to user inputs. ChatGPT is based on the OpenAI GPT-2 model, which is a large-scale language model that was trained on a large corpus of WebText, consisting of texts from various sources on the Internet, such as news articles, blogs, and social media posts. ChatGPT adapts the GPT-2 model to the conversational domain by fine-tuning it on a large corpus of human-human dialogues from Reddit, which is a popular online platform for discussion and content sharing. ChatGPT uses the Reddit data to learn the conversational patterns and styles from real human interactions.

ChatGPT also incorporates some techniques to improve the quality and consistency of the generated responses, such as persona embeddings, dialogue history, and repetition penalty. Persona embeddings are vectors that represent the personality traits and preferences of the chatbot文章来源地址https://www.toymoban.com/news/detail-403578.html

到了这里,关于加入bing体验chatGPT大军中来吧,它来了!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 微软 ChatGPT 版 Bing 上线了,使用体验如何?和ChatGPT对比怎么样?

    微软 ChatGPT 版 Bing 是一款集成了 ChatGPT 的新版搜索引擎,可以提供人工智能深度优化后的搜索结果,以及具有人工智能聊天功能的 Bing 搜索。 微软称,在来自 169 个国家和地区的用户进行了为期一周的测试后,有 71% 的测试用户认可了这款新版 Bing,并表示它可以加深用户的参

    2024年02月11日
    浏览(40)
  • ChatGPT 免费体验来了

    1、相信很多小伙伴们面试或者工作中会遇到数组扁平化这一问题,如今正是智能大火的时候,何不让我们试试水呢,所以让我们的智能用js帮我们写一个数组扁平化吧 2、这就?这就?这就写出来了?亏我抓耳挠腮半天写不出来,怀着不信,以及对真理的渴望,让我们用实践

    2023年04月12日
    浏览(36)
  • 它来了!真正的 python 多线程

    哈喽大家好,我是咸鱼 几天前,IBM 工程师 Martin Heinz 发文表示 python 3.12 版本回引入\\\"Per-Interpreter GIL”,有了这个 Per-Interpreter 全局解释器锁,python 就能实现真正意义上的并行/并发 我们知道,python 的多线程/进程并不是真正意义上的多线程/进程,这是因为 python GIL (Global In

    2024年02月06日
    浏览(38)
  • 【Claude2体验】继ChatGPT,文心一言,Bing等大模型后,初次对话Claude2的体验

    🎊专栏【小吉测评】 🍔喜欢的诗句:更喜岷山千里雪 三军过后尽开颜。 🎆音乐分享【The Right Path】 🥰欢迎并且感谢大家指出小吉的问题 测评仅仅代表一部分,仅代表本人观点。 请到网盘中查看 Claude2使用注意事项 Claude 2使用2023年初的新数据训练模型,是一名由人工智能

    2024年02月15日
    浏览(41)
  • 纯CSS的华为充电动画,它来了

    📢 鸿蒙专栏:想学鸿蒙的,冲 📢 C语言专栏:想学C语言的,冲 📢 VUE专栏:想学VUE的,冲这里 📢 Krpano专栏:想学Krpano的,冲 🔔 上述专栏,都在不定期持续更新中!!!!!!!!!!!!! 文章目录 ✨ 关键点 ✨ 效果演示 ✨ 分析逻辑  ✨ 下面附上完整代码      

    2024年02月04日
    浏览(28)
  • 计算机视觉 GPT-4V 它来了!

    GPT-4V(GPT-4Vision)(GPT-4V)是由OpenAI开发的一种多模型。GPT-4V允许用户上传一张图片作为输入,并提出关于该图片的问题,这种任务类型被称为视觉问题回答(VQA)。 GPT-4V自9月24日起推出,并将在OpenAI ChatGPT iOS应用和网络界面中提供。 OpenAI 正在扩展其在人工智能(AI)领域的视野,推出

    2024年03月21日
    浏览(47)
  • Java程序员的AI框架,它来了

            在本文中,我们将探索Spring AI——一个为Java开发者社区设计的革命性的人工智能框架。了解其核心功能、如何集成到现有的Spring应用中,以及它如何简化AI项目的开发。         在当今这个由数据和智能驱动的时代,人工智能(AI)已经成为推动业务创新和优化用

    2024年04月25日
    浏览(37)
  • 《花雕学AI》15:BingGPT桌面端——尝鲜体验ChatGPT4.0同源技术新Bing的最新成果

    37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里准备逐一动手尝试系列实验,不管成功(程序走通)

    2023年04月23日
    浏览(54)
  • 三个AI搜索工具的体验:Wetab插件中的ChatGPT、Bing AI Chat、Google Bard

    与文章对应的视频在这里 功能 Wetab插件中的ChatGPT Bing AI Chat Google Bard 优点 不需要梯子、响应速度快、支持中文 支持中文、智能度高、数据实时性强 一次性响应、数据实时性强 缺点 有广告、数据实时性弱 需要梯子、界面杂乱、只支持Edge浏览器 需要梯子、不支持中文 功能

    2024年02月09日
    浏览(51)
  • 数据库ChatGPT插件来了,SQL使用体验进一步起飞

    基于 ChatGPT API 和 OpenMLDB 数据库实现的 openmldb-chatgpt-plugin 项目开源了,作为人类迄今为止最强AI模型之一(GPT4未开放API),集成了 ChatGPT 模型的数据库有多好用,下面将带大家体验一下。 实现原理是在ChatGPT API基础上做了一定的 Prompt engineering ,没有用 fine tune ,在标准SQL场景

    2023年04月16日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包