姜启源 数学建模 第十章 牙膏的销售量Matlab代码

这篇具有很好参考价值的文章主要介绍了姜启源 数学建模 第十章 牙膏的销售量Matlab代码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

x1=[-0.05;0.25;0.60;0;0.25;0.20;0.15;0.05;-0.15;0.15;0.20;0.10;0.40;0.45;0.35;0.30;0.50;0.50;0.40;-0.05;-0.05;-0.10;0.20;0.10;0.50;0.60;-0.05;0;0.05;0.55];

y=[7.38;8.51;9.52;7.50;9.33;8.28;8.75;7.87;7.10;8.00;7.89;8.15;9.10;8.86;8.90;8.87;9.26;9.00;8.75;7.95;7.65;7.27;8.00;8.50;8.75;9.21;8.27;7.67;7.93;9.26];

qq=polyfit(x1,y,1);%qq= polyfit(x1,y,n) 返回次数为 n 的多项式 qq(x) 的系数,该阶数是 y 中数据的最佳拟合(在最小二乘方式中)。

y1=polyval(qq,x1);%y = polyval(qq,x1) 计算多项式 y1 在 x 1的每个点处的值。

plot(x1,y1,x1,y,'ro')%plot(X,Y) 创建 Y 中数据对 X 中对应值的二维线图。

%图1:Y对X1的散点图

x1=[-0.05;0.25;0.60;0;0.25;0.20;0.15;0.05;-0.15;0.15;0.20;0.10;0.40;0.45;0.35;0.30;0.50;0.50;0.40;-0.05;-0.05;-0.10;0.20;0.10;0.50;0.60;-0.05;0;0.05;0.55];

x2=[5.50;6.75;7.25;5.50;7.00;6.50;6.75;5.25;5.25;6.00;6.50;6.25;7.00;6.90;6.80;6.80;7.10;7.00;6.80;6.50;6.25;6.00;6.50;7.00;6.80;6.80;6.50;5.75;5.80;6.80];

y=[7.38;8.51;9.52;7.50;9.33;8.28;8.75;7.87;7.10;8.00;7.89;8.15;9.10;8.86;8.90;8.87;9.26;9.00;8.75;7.95;7.65;7.27;8.00;8.50;8.75;9.21;8.27;7.67;7.93;9.26];

qq=polyfit(x2,y,2);

x3=5.25:0.05:7.25;

y2=polyval(qq,x3);

plot(x2,y,'ro',x3,y2)

%图2:Y对X2的散点图

x4=[ones(30,1),x1,x2,x2.^2];

[b,bint,r,rint,stats]=regress(y,x4)%[b,bint,r,rint,stats] = regress(y,X) 还返回向量 stats,其中包含 R2 统计量、F 统计量及其 p 值,以及误差方差的估计值。
%矩阵 X 必须包含一个由 1 组成的列,以便软件正确计算模型统计量。

%表2

x5=[ones(30,1),x1,x2,x2.^2,x1.*x2];

[b,bint,r,rint,stats]=regress(y,x5)%[b,bint,r,rint,stats] = regress(y,X) 还返回向量 stats,其中包含 R2 统计量、F 统计量及其 p 值,以及误差方差的估计值。
%矩阵 X 必须包含一个由 1 组成的列,以便软件正确计算模型统计量。

%表3

x1=[-0.05;0.25;0.60;0;0.25;0.20;0.15;0.05;-0.15;0.15;0.20;0.10;0.40;0.45;0.35;0.30;0.50;0.50;0.40;-0.05;-0.05;-0.10;0.20;0.10;0.50;0.60;-0.05;0;0.05;0.55];

ytu3=17.3244+1.307*x1+(-3.6956)*6.5+0.3486*6.5*6.5;

plot(x1,ytu3)

grid on

%图3

x1=[-0.05;0.25;0.60;0;0.25;0.20;0.15;0.05;-0.15;0.15;0.20;0.10;0.40;0.45;0.35;0.30;0.50;0.50;0.40;-0.05;-0.05;-0.10;0.20;0.10;0.50;0.60;-0.05;0;0.05;0.55];

ytu4=29.1133+11.1342*x1+(-7.608*6.5)+0.6712*6.5*6.5+(-1.4777)*6.5*x1;

plot(x1,ytu4)

grid on

%图4

x2=[5.50;6.75;7.25;5.50;7.00;6.50;6.75;5.25;5.25;6.00;6.50;6.25;7.00;6.90;6.80;6.80;7.10;7.00;6.80;6.50;6.25;6.00;6.50;7.00;6.80;6.80;6.50;5.75;5.80;6.80];

ytu5=17.3244+1.307*0.2+(-3.6956)*x2+0.3486*x2.*x2;

hh=polyfit(x2,ytu5,2);

xtu5=5.25:0.05:7.25;

ytu51=polyval(hh,xtu5);

plot(xtu5,ytu51)

grid on

%图5

x2=[5.50;6.75;7.25;5.50;7.00;6.50;6.75;5.25;5.25;6.00;6.50;6.25;7.00;6.90;6.80;6.80;7.
10;7.00;6.80;6.50;6.25;6.00;6.50;7.00;6.80;6.80;6.50;5.75;5.80;6.80];
ytu6=29.1133+11.1342*0.2+(-7.608*x2)+0.6712*x2.*x2+(-1.4777)*x2*0.2;
hh=polyfit(x2,ytu6,2);
xtu6=5.25:0.05:7.25;
ytu61=polyval(hh,xtu6);
plot(xtu6,ytu61)
grid on
%图6

x2=[5.50;6.75;7.25;5.50;7.00;6.50;6.75;5.25;5.25;6.00;6.50;6.25;7.00;6.90;6.80;6.80;7.
10;7.00;6.80;6.50;6.25;6.00;6.50;7.00;6.80;6.80;6.50;5.75;5.80;6.80];
xtu7=sort(x2);
ytu7=30.2267-7.7558*xtu7+0.6712*xtu7.^2;
plot(xtu7,ytu7)
grid on
hold on
ytu8=32.4535-8.0513*xtu7+0.6712*xtu7.^2;
plot(xtu7,ytu8)
hold off
%图7

x1=[-0.05;0.25;0.60;0;0.25;0.20;0.15;0.05;-0.15;0.15;0.20;0.10;0.40;0.45;0.35;0.30;0.50;0.50;0.40;-0.05;-0.05;-0.10;0.20;0.10;0.50;0.60;-0.05;0;0.05;0.55];
x2=[5.50;6.75;7.25;5.50;7.00;6.50;6.75;5.25;5.25;6.00;6.50;6.25;7.00;6.90;6.80;6.80;7.10;7.00;6.80;6.50;6.25;6.00;6.50;7.00;6.80;6.80;6.50;5.75;5.80;6.80];
xtu8=[x1,x2];
y=[7.38;8.51;9.52;7.50;9.33;8.28;8.75;7.87;7.10;8.00;7.89;8.15;9.10;8.86;8.90;8.87;9.26;9.00;8.75;7.95;7.65;7.27;8.00;8.50;8.75;9.21;8.27;7.67;7.93;9.26];
rstool(xtu8,y,'quadratic')
%图8文章来源地址https://www.toymoban.com/news/detail-403675.html

到了这里,关于姜启源 数学建模 第十章 牙膏的销售量Matlab代码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模学习(5):数学建模各类题型及解题方案

    总体来说,数学建模赛题类型主要分为: 评价类、预测类和优化类 三种,其中优化类是最常见的赛题类 型,几乎每年的地区赛或国赛美赛等均有出题,必须要掌握并且熟悉。     综合评价是数学建模中的一类常见的问题,在国赛和美赛中都经常出现,例如国赛05年长江水质

    2024年02月14日
    浏览(45)
  • 数学建模 | 数学建模常用的十种解题方法

    ===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 =====================================================

    2024年01月15日
    浏览(49)
  • 数学建模学习(2):数学建模各类常用的算法全解析

    常见的评价算法  1.层次分析法 基本思想         是定性与定量相结合的多准则决策、评价方法。将决策的有关元素分解成 目标层、准则层和方案层 ,并通过人们的 判断对决策方案的 优劣进行排序 ,在此基础上进行定性和定量分析。它把人的思维过程层次化、数量化,

    2024年02月09日
    浏览(49)
  • 【数学建模】历年数学建模国赛评价类题目汇总

    年份 题目 模型/算法/解题方法 1993B题:足球甲级联赛排名问题 评价与决策 2005A题:长江水质的评价与预测问题 综合评价和预测问题(非常典型和传统的问题) 2005C题:雨量预报方法的评价问题 综合评价问题 2006B题:艾滋病疗法的评价及预测问题 评价和预测(分类、拟合、线性

    2024年02月07日
    浏览(52)
  • 数学建模的概念和学习方法(什么是数学建模)

    数学建模是将数学方法和技巧应用于实际问题的过程。它涉及使用数学模型来描述和分析现实世界中的现象、系统或过程,并通过数学分析和计算来预测、优化或解决问题。数学建模可以应用于各种领域,包括自然科学、工程、经济学、环境科学、社会科学等。 数学建模的一

    2024年02月12日
    浏览(40)
  • 【数学建模】《实战数学建模:例题与讲解》第五讲-微分方程建模(含Matlab代码)

    如果这篇文章对你有帮助,欢迎点赞与收藏~ 微分方程建模是数学建模中一种极其重要的方法,它在解决众多实际问题时发挥着关键作用。这些实际问题的数学表述通常会导致求解特定的微分方程。将各种实际问题转换为微分方程的定解问题主要包括以下几个步骤: 确定研究

    2024年03月18日
    浏览(73)
  • 2023年数学建模:逻辑回归在数学建模中的应用

    目录 引言 逻辑回归原理 1. 数学原理 2. 直观解释

    2024年02月09日
    浏览(37)
  • 【数学建模】历年全国大学生数学建模竞赛题目+定位分析

    数学建模 https://so.csdn.net/so/search?q=%E6%95%B0%E5%AD%A6%E5%BB%BA%E6%A8%A1spm=1001.2101.3001.7020 国赛创办于1992年,每年一届,是首批列入“高校学科竞赛排行榜”的19项竞赛之一。2020年,来自全国及美国、英国、马来西亚的1470所院校/校区、45680队(本科41826队、专科3854队)、13万多人报名参赛

    2024年02月06日
    浏览(83)
  • 2023年数学建模:旅行商问题:数学建模与MATLAB实现

    目录 引言 问题定义 解决策略 MATLAB实现 数学建模案例

    2024年02月11日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包