姜启源 数学建模 第十章 牙膏的销售量Matlab代码

这篇具有很好参考价值的文章主要介绍了姜启源 数学建模 第十章 牙膏的销售量Matlab代码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

x1=[-0.05;0.25;0.60;0;0.25;0.20;0.15;0.05;-0.15;0.15;0.20;0.10;0.40;0.45;0.35;0.30;0.50;0.50;0.40;-0.05;-0.05;-0.10;0.20;0.10;0.50;0.60;-0.05;0;0.05;0.55];

y=[7.38;8.51;9.52;7.50;9.33;8.28;8.75;7.87;7.10;8.00;7.89;8.15;9.10;8.86;8.90;8.87;9.26;9.00;8.75;7.95;7.65;7.27;8.00;8.50;8.75;9.21;8.27;7.67;7.93;9.26];

qq=polyfit(x1,y,1);%qq= polyfit(x1,y,n) 返回次数为 n 的多项式 qq(x) 的系数,该阶数是 y 中数据的最佳拟合(在最小二乘方式中)。

y1=polyval(qq,x1);%y = polyval(qq,x1) 计算多项式 y1 在 x 1的每个点处的值。

plot(x1,y1,x1,y,'ro')%plot(X,Y) 创建 Y 中数据对 X 中对应值的二维线图。

%图1:Y对X1的散点图

x1=[-0.05;0.25;0.60;0;0.25;0.20;0.15;0.05;-0.15;0.15;0.20;0.10;0.40;0.45;0.35;0.30;0.50;0.50;0.40;-0.05;-0.05;-0.10;0.20;0.10;0.50;0.60;-0.05;0;0.05;0.55];

x2=[5.50;6.75;7.25;5.50;7.00;6.50;6.75;5.25;5.25;6.00;6.50;6.25;7.00;6.90;6.80;6.80;7.10;7.00;6.80;6.50;6.25;6.00;6.50;7.00;6.80;6.80;6.50;5.75;5.80;6.80];

y=[7.38;8.51;9.52;7.50;9.33;8.28;8.75;7.87;7.10;8.00;7.89;8.15;9.10;8.86;8.90;8.87;9.26;9.00;8.75;7.95;7.65;7.27;8.00;8.50;8.75;9.21;8.27;7.67;7.93;9.26];

qq=polyfit(x2,y,2);

x3=5.25:0.05:7.25;

y2=polyval(qq,x3);

plot(x2,y,'ro',x3,y2)

%图2:Y对X2的散点图

x4=[ones(30,1),x1,x2,x2.^2];

[b,bint,r,rint,stats]=regress(y,x4)%[b,bint,r,rint,stats] = regress(y,X) 还返回向量 stats,其中包含 R2 统计量、F 统计量及其 p 值,以及误差方差的估计值。
%矩阵 X 必须包含一个由 1 组成的列,以便软件正确计算模型统计量。

%表2

x5=[ones(30,1),x1,x2,x2.^2,x1.*x2];

[b,bint,r,rint,stats]=regress(y,x5)%[b,bint,r,rint,stats] = regress(y,X) 还返回向量 stats,其中包含 R2 统计量、F 统计量及其 p 值,以及误差方差的估计值。
%矩阵 X 必须包含一个由 1 组成的列,以便软件正确计算模型统计量。

%表3

x1=[-0.05;0.25;0.60;0;0.25;0.20;0.15;0.05;-0.15;0.15;0.20;0.10;0.40;0.45;0.35;0.30;0.50;0.50;0.40;-0.05;-0.05;-0.10;0.20;0.10;0.50;0.60;-0.05;0;0.05;0.55];

ytu3=17.3244+1.307*x1+(-3.6956)*6.5+0.3486*6.5*6.5;

plot(x1,ytu3)

grid on

%图3

x1=[-0.05;0.25;0.60;0;0.25;0.20;0.15;0.05;-0.15;0.15;0.20;0.10;0.40;0.45;0.35;0.30;0.50;0.50;0.40;-0.05;-0.05;-0.10;0.20;0.10;0.50;0.60;-0.05;0;0.05;0.55];

ytu4=29.1133+11.1342*x1+(-7.608*6.5)+0.6712*6.5*6.5+(-1.4777)*6.5*x1;

plot(x1,ytu4)

grid on

%图4

x2=[5.50;6.75;7.25;5.50;7.00;6.50;6.75;5.25;5.25;6.00;6.50;6.25;7.00;6.90;6.80;6.80;7.10;7.00;6.80;6.50;6.25;6.00;6.50;7.00;6.80;6.80;6.50;5.75;5.80;6.80];

ytu5=17.3244+1.307*0.2+(-3.6956)*x2+0.3486*x2.*x2;

hh=polyfit(x2,ytu5,2);

xtu5=5.25:0.05:7.25;

ytu51=polyval(hh,xtu5);

plot(xtu5,ytu51)

grid on

%图5

x2=[5.50;6.75;7.25;5.50;7.00;6.50;6.75;5.25;5.25;6.00;6.50;6.25;7.00;6.90;6.80;6.80;7.
10;7.00;6.80;6.50;6.25;6.00;6.50;7.00;6.80;6.80;6.50;5.75;5.80;6.80];
ytu6=29.1133+11.1342*0.2+(-7.608*x2)+0.6712*x2.*x2+(-1.4777)*x2*0.2;
hh=polyfit(x2,ytu6,2);
xtu6=5.25:0.05:7.25;
ytu61=polyval(hh,xtu6);
plot(xtu6,ytu61)
grid on
%图6

x2=[5.50;6.75;7.25;5.50;7.00;6.50;6.75;5.25;5.25;6.00;6.50;6.25;7.00;6.90;6.80;6.80;7.
10;7.00;6.80;6.50;6.25;6.00;6.50;7.00;6.80;6.80;6.50;5.75;5.80;6.80];
xtu7=sort(x2);
ytu7=30.2267-7.7558*xtu7+0.6712*xtu7.^2;
plot(xtu7,ytu7)
grid on
hold on
ytu8=32.4535-8.0513*xtu7+0.6712*xtu7.^2;
plot(xtu7,ytu8)
hold off
%图7

x1=[-0.05;0.25;0.60;0;0.25;0.20;0.15;0.05;-0.15;0.15;0.20;0.10;0.40;0.45;0.35;0.30;0.50;0.50;0.40;-0.05;-0.05;-0.10;0.20;0.10;0.50;0.60;-0.05;0;0.05;0.55];
x2=[5.50;6.75;7.25;5.50;7.00;6.50;6.75;5.25;5.25;6.00;6.50;6.25;7.00;6.90;6.80;6.80;7.10;7.00;6.80;6.50;6.25;6.00;6.50;7.00;6.80;6.80;6.50;5.75;5.80;6.80];
xtu8=[x1,x2];
y=[7.38;8.51;9.52;7.50;9.33;8.28;8.75;7.87;7.10;8.00;7.89;8.15;9.10;8.86;8.90;8.87;9.26;9.00;8.75;7.95;7.65;7.27;8.00;8.50;8.75;9.21;8.27;7.67;7.93;9.26];
rstool(xtu8,y,'quadratic')
%图8文章来源地址https://www.toymoban.com/news/detail-403675.html

到了这里,关于姜启源 数学建模 第十章 牙膏的销售量Matlab代码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模学习(5):数学建模各类题型及解题方案

    总体来说,数学建模赛题类型主要分为: 评价类、预测类和优化类 三种,其中优化类是最常见的赛题类 型,几乎每年的地区赛或国赛美赛等均有出题,必须要掌握并且熟悉。     综合评价是数学建模中的一类常见的问题,在国赛和美赛中都经常出现,例如国赛05年长江水质

    2024年02月14日
    浏览(50)
  • 数学建模 | 数学建模常用的十种解题方法

    ===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 =====================================================

    2024年01月15日
    浏览(53)
  • 【数学建模】历年数学建模国赛评价类题目汇总

    年份 题目 模型/算法/解题方法 1993B题:足球甲级联赛排名问题 评价与决策 2005A题:长江水质的评价与预测问题 综合评价和预测问题(非常典型和传统的问题) 2005C题:雨量预报方法的评价问题 综合评价问题 2006B题:艾滋病疗法的评价及预测问题 评价和预测(分类、拟合、线性

    2024年02月07日
    浏览(55)
  • 数学建模学习(2):数学建模各类常用的算法全解析

    常见的评价算法  1.层次分析法 基本思想         是定性与定量相结合的多准则决策、评价方法。将决策的有关元素分解成 目标层、准则层和方案层 ,并通过人们的 判断对决策方案的 优劣进行排序 ,在此基础上进行定性和定量分析。它把人的思维过程层次化、数量化,

    2024年02月09日
    浏览(53)
  • 数学建模的概念和学习方法(什么是数学建模)

    数学建模是将数学方法和技巧应用于实际问题的过程。它涉及使用数学模型来描述和分析现实世界中的现象、系统或过程,并通过数学分析和计算来预测、优化或解决问题。数学建模可以应用于各种领域,包括自然科学、工程、经济学、环境科学、社会科学等。 数学建模的一

    2024年02月12日
    浏览(44)
  • 【数学建模】《实战数学建模:例题与讲解》第五讲-微分方程建模(含Matlab代码)

    如果这篇文章对你有帮助,欢迎点赞与收藏~ 微分方程建模是数学建模中一种极其重要的方法,它在解决众多实际问题时发挥着关键作用。这些实际问题的数学表述通常会导致求解特定的微分方程。将各种实际问题转换为微分方程的定解问题主要包括以下几个步骤: 确定研究

    2024年03月18日
    浏览(76)
  • 数学建模入门-如何从0开始,掌握数学建模的基本技能

            本文主要面向没有了解过数学建模的同学,帮助同学们如何快速地进行数学建模的入门并且尽快地在各类赛事中获奖,或者写出优秀的数学建模论文。         在本文中,我将从什么是数学建模、数学建模的应用领域、数学建模的基本步骤、数学建模的技巧和工

    2024年02月16日
    浏览(45)
  • 2023年数学建模:旅行商问题:数学建模与MATLAB实现

    目录 引言 问题定义 解决策略 MATLAB实现 数学建模案例

    2024年02月11日
    浏览(49)
  • 2023年数学建模:逻辑回归在数学建模中的应用

    目录 引言 逻辑回归原理 1. 数学原理 2. 直观解释

    2024年02月09日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包