机器学习(五):混合高斯聚类(求聚类标签)+PCA降维(3维降2维)习题

这篇具有很好参考价值的文章主要介绍了机器学习(五):混合高斯聚类(求聚类标签)+PCA降维(3维降2维)习题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

  1. 使用混合高斯模型 GMM,计算如下数据点的聚类过程:
    \(Data = np.array([1,2,6,7])\)
    均值初值为:
    \(\mu_1, \mu_2 = 1, 5\)
    权重初值为:
    \(w_1, w_2 = 0.5, 0.5\)
    方差:
    \(std_1, std_2 = 1, 1\)
    \(K = 2\)
    10 次迭代后数据的聚类标签是多少?

采用python代码实现:

from scipy import stats
import numpy as np

#初始化数据
Data = np.array([1,2,6,7])
w1 , w2 = 0.5, 0.5
mu1 , mu2 = 1, 5
std1 , std2 = 1, 1

n = len(Data) # 样本长度
zij=np.zeros([n,2])
for t in range(10):
    # E-step 依据当前参数,计算每个数据点属于每个子分布的概率
    z1_up = w1 * stats.norm(mu1 ,std1).pdf(Data)
    z2_up = w2*stats.norm(mu2 , std2).pdf(Data)
    z_all = (w1*stats.norm(mu1 ,std1).pdf(Data)+w2*stats.norm(mu2 ,std2).pdf(Data))+0.001
    rz1 = z1_up/z_all # 为甲分布的概率
    rz2 = z2_up/z_all # 为乙分布的概率
    # M-step 依据 E-step 的结果,更新每个子分布的参数。
    mu1 = np.sum(rz1*Data)/np.sum(rz1)
    mu2 = np.sum(rz2*Data)/np.sum(rz2)
    std1 = np.sum(rz1*np.square(Data-mu1))/np.sum(rz1)
    std2 = np.sum(rz2*np.square(Data-mu2))/np.sum(rz2)
    w1 = np.sum(rz1)/n
    w2 = np.sum(rz2)/n
for i in range(n):
    zij[i][0] = rz1[i]/(rz1[i]+rz2[i])
    zij[i][1] = rz2[i]/(rz1[i]+rz2[i])

labels = np.argmax(zij, axis=1)#输出每一行的最大值,0或1  axis表示返回每一行中最大值所在列的索引
print(labels)

聚类标签输出结果:[0 0 1 1]

也就是说,10 次迭代后数据的聚类标签是1,2归为0类6,7归为1

附注:

如果 axis 为 None,那么 np.argmax 会将数组展平为一维,然后返回最大值的索引。例如:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.argmax(a)
3

如果 axis 为 0,那么 np.argmax 会沿着第一个维度(行)进行最大值的查找,返回每一列中最大值所在的行索引。例如:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.argmax(a, axis=0)
array([1, 1])

如果 axis 为 1,那么 np.argmax 会沿着第二个维度(列)进行最大值的查找,返回每一行中最大值所在的列索引。例如:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.argmax(a, axis=1)
array([1, 1])

在之前问题中,np.argmax([gamma1, gamma2], axis=0) 的意思是沿着第一个维度(gamma1 和 gamma2)进行最大值的查找,返回每个数据点属于哪个子分布的概率更大。

  1. 假设我们的数据集有 10 个 3 维数据, 需要用 PCA 降到 2 维特征。

    array([
        [ 3.25, 1.85, -1.29],
        [ 3.06, 1.25, -0.18],
        [ 3.46, 2.68, 0.64],
        [ 0.3 , -0.1 , -0.79],
        [ 0.83, -0.21, -0.88],
        [ 1.82, 0.99, 0.16],
        [ 2.78, 1.75, 0.51],
        [ 2.08, 1.5 , -1.06],
        [ 2.62, 1.23, 0.04],
        [ 0.83, -0.69, -0.61]])
    

    给出求解过程

解:

  1. 对所有的样本进行中心化:
\[x^{(i)}=x^{(i)}-\frac{1}{m} \sum_{j=1}^{m} x^{(j)} \]

得到:

X=np.array([
     [ 1.147  0.825 -0.944]
     [ 0.957  0.225  0.166]
     [ 1.357  1.655  0.986]
     [-1.803 -1.125 -0.444]
     [-1.273 -1.235 -0.534]
     [-0.283 -0.035  0.506]
     [ 0.677  0.725  0.856]
     [-0.023  0.475 -0.714]
     [ 0.517  0.205  0.386]
     [-1.273 -1.715 -0.264]])
  1. 计算样本的协方差矩阵 $X X^{T} $
covM2=np.array([[1.26344556 1.08743889 0.32030889], 
[1.08743889 1.11076111 0.31611111],
[0.32030889 0.31611111 0.45449333]])
  1. 对矩阵 $X X^{T} $ 进行特征值分解

取出最大的 \(\mathrm{n}^{\prime}\) 个特征值对应的特征向量 $ \left(w_{1}, \ldots, w_{n^{\prime}}\right) $, 将所有的特征向量标准化后,组成特征向量矩阵 \(W\)

3.1求出特征值:

eigval=np.array([2.38219729 0.09637041 0.35013229])

3.2特征向量标准化:

eigvec=np.array([
[ 0.71144     0.67380165 -0.19961077],
[ 0.66498574 -0.73733944 -0.11884665],
[ 0.22725997  0.04818606  0.97264126]])

3.3取出特征值最大的2个特征值索引,也就是\([2.38, 0.35]\)对应的第1列和第3列:

indexes=[2 0]

3.4特征向量矩阵W:(对eigvec取了第3列和第1列)

W=np.array([
[-0.19961077  0.71144   ], 
[-0.11884665   0.66498574], 
[ 0.97264126   0.22725997]])
  1. 对样本集中的每一个样本 \(x^{(i)}\) , 转化为新的样本 \(z^{(i)}=W^{T} x^{(i)}\) ,得到输出样本集 $D=\left(z^{(1)}, \ldots z^{(m)}\right) $

X:3×10 W:3×2 \(x\cdot W =10\times3 \quad 3\times2\) 因为输入行列转置,结果是一致的

D=np.array([
     [-1.24517539  1.15010151]
     [-0.05630956  0.86819503]
     [ 0.49146125  2.29005381]
     [ 0.06174799 -2.1317387 ]
     [-0.1185103  -1.84827733]
     [ 0.55280596 -0.10961848]
     [ 0.6112806   1.15829407]
     [-0.74632697  0.13724149]
     [ 0.24787719  0.5918589 ]
     [ 0.20114923 -2.10611029]])

代码:

import numpy as np

X=np.array([
    [ 3.25, 1.85, -1.29],
    [ 3.06, 1.25, -0.18],
    [ 3.46, 2.68, 0.64],
    [ 0.3 , -0.1 , -0.79],
    [ 0.83, -0.21, -0.88],
    [ 1.82, 0.99, 0.16],
    [ 2.78, 1.75, 0.51],
    [ 2.08, 1.5 , -1.06],
    [ 2.62, 1.23, 0.04],
    [ 0.83, -0.69, -0.61]])

def pca(X, d):
    # Centralization中心化
    means = np.mean(X, 0)
    X = X - means
    print(X)
    # Covariance Matrix 计算样本协方差矩阵
    M=len(X)
    X=np.mat(X)    
    covM2=np.cov(X.T)
    # 求出特征值,特征值分解
    eigval , eigvec = np.linalg.eig(covM2)
    indexes = np.argsort(eigval)[-d:]
    W = eigvec[:, indexes]
    return X*W
print(pca(X, 2))

附注:

np.cov()是一个用于计算协方差矩阵的函数,它可以接受一个或两个数组作为参数,返回一个二维数组,表示协方差矩阵。

协方差矩阵是一个对称矩阵,它的对角线元素表示各个变量的方差,非对角线元素表示两个变量之间的协方差。协方差反映了两个变量的线性相关程度,如果协方差为正,说明两个变量正相关;如果协方差为负,说明两个变量负相关;如果协方差为零,说明两个变量无相关性。

np.cov()的用法如下:

np.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)

参数说明:

  • m: 一个一维或二维的数组,表示多个变量和观测值。如果是一维数组,表示一个变量的观测值;如果是二维数组,每一行表示一个变量,每一列表示一个观测值。
  • y: 可选参数,另一个一维或二维的数组,表示另一组变量和观测值,必须和m具有相同的形状。
  • rowvar: 可选参数,布尔值,默认为True。如果为True,表示每一行代表一个变量;如果为False,表示每一列代表一个变量。
  • bias: 可选参数,布尔值,默认为False。如果为False,表示计算无偏协方差(除以n-1);如果为True,表示计算有偏协方差(除以n)。
  • ddof: 可选参数,整数,默认为None。如果不为None,则覆盖由bias隐含的默认值。ddof=0表示计算有偏协方差;ddof=1表示计算无偏协方差。
  • fweights: 可选参数,一维数组或整数,默认为None。表示每次观测的频率权重。
  • aweights: 可选参数,一维数组,默认为None。表示每个变量的可靠性权重。

返回值:

  • 一个二维数组,表示协方差矩阵。

举例说明:文章来源地址https://www.toymoban.com/news/detail-403933.html

import numpy as np

# 生成两组随机数据
x = np.random.randn(10)
y = np.random.randn(10)

# 计算x和y的协方差矩阵
cov_xy = np.cov(x,y)
print(cov_xy)
# 输出:
[[ 0.8136679  -0.01594772]
 [-0.01594772  0.84955963]]

# 计算x和y的相关系数矩阵
corr_xy = np.corrcoef(x,y)
print(corr_xy)
# 输出:
[[ 1.         -0.01904402]
 [-0.01904402  1.        ]]

到了这里,关于机器学习(五):混合高斯聚类(求聚类标签)+PCA降维(3维降2维)习题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习:什么是分类/回归/聚类/降维/决策

    目录 学习模式分为三大类:监督,无监督,强化学习 监督学习基本问题 分类问题 回归问题 无监督学习基本问题 聚类问题 降维问题 强化学习基本问题 决策问题 如何选择合适的算法 我们将涵盖目前「五大」最常见机器学习任务: 回归 分类 聚类 降维 决策 分类是监督学习

    2024年02月12日
    浏览(32)
  • 结合PCA降维的DBSCAN聚类方法(附Python代码)

      目录 前言介绍: 1、PCA降维: (1)概念解释: (2)实现步骤: (3)优劣相关:  2、DBSCAN聚类: (1)概念解释: (2)算法原理: (3)优劣相关: 代码实现: 0、数据准备: 1、PCA降维: 2、DBSCAN聚类: 3、代码汇总: 实现效果: 1、降维效果: 2、聚类效果: 写在最后

    2024年02月04日
    浏览(24)
  • 机器学习:基于PCA对人脸识别数据降维并建立KNN模型检验

    作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍 📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪 大家好,我

    2024年02月01日
    浏览(31)
  • 【AI底层逻辑】——篇章5(下):机器学习算法之聚类&降维&时间序列

    续上: 目录 4、聚类 5、降维 6、时间序列 三、无完美算法  往期精彩: 聚类即把相似的东西归在一起, 与 分类 不同的是#

    2024年02月15日
    浏览(34)
  • 使用高斯混合模型进行聚类

            高斯混合模型 (GMM) 是一种基于概率密度估计的聚类分析技术。它假设数据点是由具有不同均值和方差的多个高斯分布的混合生成的。它可以在某些结果中提供有效的聚类结果。         K 均值聚类算法在每个聚类的中心周围放置一个圆形边界。当数据具有圆

    2024年02月09日
    浏览(27)
  • 详解高斯混合聚类(GMM)算法原理

    详解高斯混合聚类(GMM)算法原理 摘要:高斯混合聚类(GMM)是一种聚类算法,可以用来对数据进行分类。GMM算法假设数据点是由一个或多个高斯分布生成的,并通过最大似然估计的方法来估计每个簇的高斯分布的参数。在实际应用中,GMM聚类算法可以用于许多领域。例如,使用

    2024年02月10日
    浏览(36)
  • Python | 机器学习之PCA降维

    ​ 🌈个人主页: Sarapines Programmer 🔥 系列专栏: 《人工智能奇遇记》 🔖墨香寄清辞:诗馀墨痕深,梦漫星辰寂。 曲径通幽意犹在,剑指苍穹气势立。 目录结构 1. 机器学习之PCA降维概念 1.1 机器学习 1.2 PCA降维 2. PCA降维 2.1 实验目的 2.2 实验准备 2.3 实验原理 2.4 实验内容

    2024年02月05日
    浏览(75)
  • 特征波长筛选算法有CARS,SPA,GA,MCUVE,光谱数据降维算法以及数据聚类算法PCA

    特征波长筛选算法有CARS,SPA,GA,MCUVE,光谱数据降维算法以及数据聚类算法PCA,KPCA,KNN,HC层次聚类降维,以及SOM数据聚类算法,都是直接替换数据就可以用,程序内有注释,直接替换光谱数据,以及实测值,就可以做特征波长筛选以及数据聚类,同时本人也承接光谱代分

    2024年01月20日
    浏览(30)
  • KMeans算法与GMM混合高斯聚类

    K-Means是GMM的特例(硬聚类,基于原型的聚类)。假设多元高斯分布的协方差为0,方差相同。   K-Means算法思想 对于给定的样本集,按照样本间的距离,将样本集划分为K个簇。 簇内的点尽量紧密连接,而簇间的距离尽量的大。 本质上是个组合优化问题, 类似于将N个球分配到

    2023年04月16日
    浏览(27)
  • 基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 2.1 Python 2.2 Matlab 🎉3 参考文献 🌈4 Matla

    2024年02月15日
    浏览(30)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包