机器学习(五):混合高斯聚类GMM(求聚类标签)+PCA降维(3维降2维)习题

这篇具有很好参考价值的文章主要介绍了机器学习(五):混合高斯聚类GMM(求聚类标签)+PCA降维(3维降2维)习题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

  1. 使用混合高斯模型 GMM,计算如下数据点的聚类过程:
    \(Data = np.array([1,2,6,7])\)
    均值初值为:
    \(\mu_1, \mu_2 = 1, 5\)
    权重初值为:
    \(w_1, w_2 = 0.5, 0.5\)
    方差:
    \(std_1, std_2 = 1, 1\)
    \(K = 2\)
    10 次迭代后数据的聚类标签是多少?

采用python代码实现:

from scipy import stats
import numpy as np

#初始化数据
Data = np.array([1,2,6,7])
w1 , w2 = 0.5, 0.5
mu1 , mu2 = 1, 5
std1 , std2 = 1, 1

n = len(Data) # 样本长度
zij=np.zeros([n,2])
for t in range(10):
    # E-step 依据当前参数,计算每个数据点属于每个子分布的概率
    z1_up = w1 * stats.norm(mu1 ,std1).pdf(Data)
    z2_up = w2*stats.norm(mu2 , std2).pdf(Data)
    z_all = (w1*stats.norm(mu1 ,std1).pdf(Data)+w2*stats.norm(mu2 ,std2).pdf(Data))+0.001
    rz1 = z1_up/z_all # 为甲分布的概率
    rz2 = z2_up/z_all # 为乙分布的概率
    # M-step 依据 E-step 的结果,更新每个子分布的参数。
    mu1 = np.sum(rz1*Data)/np.sum(rz1)
    mu2 = np.sum(rz2*Data)/np.sum(rz2)
    std1 = np.sum(rz1*np.square(Data-mu1))/np.sum(rz1)
    std2 = np.sum(rz2*np.square(Data-mu2))/np.sum(rz2)
    w1 = np.sum(rz1)/n
    w2 = np.sum(rz2)/n
for i in range(n):
    zij[i][0] = rz1[i]/(rz1[i]+rz2[i])
    zij[i][1] = rz2[i]/(rz1[i]+rz2[i])

labels = np.argmax(zij, axis=1)#输出每一行的最大值,0或1  axis表示返回每一行中最大值所在列的索引
print(labels)

聚类标签输出结果:[0 0 1 1]

也就是说,10 次迭代后数据的聚类标签是1,2归为0类6,7归为1

附注:

如果 axis 为 None,那么 np.argmax 会将数组展平为一维,然后返回最大值的索引。例如:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.argmax(a)
3

如果 axis 为 0,那么 np.argmax 会沿着第一个维度(行)进行最大值的查找,返回每一列中最大值所在的行索引。例如:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.argmax(a, axis=0)
array([1, 1])

如果 axis 为 1,那么 np.argmax 会沿着第二个维度(列)进行最大值的查找,返回每一行中最大值所在的列索引。例如:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.argmax(a, axis=1)
array([1, 1])

在之前问题中,np.argmax([gamma1, gamma2], axis=0) 的意思是沿着第一个维度(gamma1 和 gamma2)进行最大值的查找,返回每个数据点属于哪个子分布的概率更大。

  1. 假设我们的数据集有 10 个 3 维数据, 需要用 PCA 降到 2 维特征。

    array([
        [ 3.25, 1.85, -1.29],
        [ 3.06, 1.25, -0.18],
        [ 3.46, 2.68, 0.64],
        [ 0.3 , -0.1 , -0.79],
        [ 0.83, -0.21, -0.88],
        [ 1.82, 0.99, 0.16],
        [ 2.78, 1.75, 0.51],
        [ 2.08, 1.5 , -1.06],
        [ 2.62, 1.23, 0.04],
        [ 0.83, -0.69, -0.61]])
    

    给出求解过程

解:

  1. 对所有的样本进行中心化:
\[x^{(i)}=x^{(i)}-\frac{1}{m} \sum_{j=1}^{m} x^{(j)} \]

得到:

X=np.array([
     [ 1.147  0.825 -0.944]
     [ 0.957  0.225  0.166]
     [ 1.357  1.655  0.986]
     [-1.803 -1.125 -0.444]
     [-1.273 -1.235 -0.534]
     [-0.283 -0.035  0.506]
     [ 0.677  0.725  0.856]
     [-0.023  0.475 -0.714]
     [ 0.517  0.205  0.386]
     [-1.273 -1.715 -0.264]])
  1. 计算样本的协方差矩阵 $X X^{T} $
covM2=np.array([[1.26344556 1.08743889 0.32030889], 
[1.08743889 1.11076111 0.31611111],
[0.32030889 0.31611111 0.45449333]])
  1. 对矩阵 $X X^{T} $ 进行特征值分解

取出最大的 \(\mathrm{n}^{\prime}\) 个特征值对应的特征向量 $ \left(w_{1}, \ldots, w_{n^{\prime}}\right) $, 将所有的特征向量标准化后,组成特征向量矩阵 \(W\)

3.1求出特征值:

eigval=np.array([2.38219729 0.09637041 0.35013229])

3.2特征向量标准化:

eigvec=np.array([
[ 0.71144     0.67380165 -0.19961077],
[ 0.66498574 -0.73733944 -0.11884665],
[ 0.22725997  0.04818606  0.97264126]])

3.3取出特征值最大的2个特征值索引,也就是\([2.38, 0.35]\)对应的第1列和第3列:

indexes=[2 0]

3.4特征向量矩阵W:(对eigvec取了第3列和第1列)

W=np.array([
[-0.19961077  0.71144   ], 
[-0.11884665   0.66498574], 
[ 0.97264126   0.22725997]])
  1. 对样本集中的每一个样本 \(x^{(i)}\) , 转化为新的样本 \(z^{(i)}=W^{T} x^{(i)}\) ,得到输出样本集 $D=\left(z^{(1)}, \ldots z^{(m)}\right) $

X:3×10 W:3×2 \(x\cdot W =10\times3 \quad 3\times2\) 因为输入行列转置,结果是一致的

D=np.array([
     [-1.24517539  1.15010151]
     [-0.05630956  0.86819503]
     [ 0.49146125  2.29005381]
     [ 0.06174799 -2.1317387 ]
     [-0.1185103  -1.84827733]
     [ 0.55280596 -0.10961848]
     [ 0.6112806   1.15829407]
     [-0.74632697  0.13724149]
     [ 0.24787719  0.5918589 ]
     [ 0.20114923 -2.10611029]])

代码:

import numpy as np

X=np.array([
    [ 3.25, 1.85, -1.29],
    [ 3.06, 1.25, -0.18],
    [ 3.46, 2.68, 0.64],
    [ 0.3 , -0.1 , -0.79],
    [ 0.83, -0.21, -0.88],
    [ 1.82, 0.99, 0.16],
    [ 2.78, 1.75, 0.51],
    [ 2.08, 1.5 , -1.06],
    [ 2.62, 1.23, 0.04],
    [ 0.83, -0.69, -0.61]])

def pca(X, d):
    # Centralization中心化
    means = np.mean(X, 0)
    X = X - means
    print(X)
    # Covariance Matrix 计算样本协方差矩阵
    M=len(X)
    X=np.mat(X)    
    covM2=np.cov(X.T)
    # 求出特征值,特征值分解
    eigval , eigvec = np.linalg.eig(covM2)
    indexes = np.argsort(eigval)[-d:]
    W = eigvec[:, indexes]
    return X*W
print(pca(X, 2))

附注:

np.cov()是一个用于计算协方差矩阵的函数,它可以接受一个或两个数组作为参数,返回一个二维数组,表示协方差矩阵。

协方差矩阵是一个对称矩阵,它的对角线元素表示各个变量的方差,非对角线元素表示两个变量之间的协方差。协方差反映了两个变量的线性相关程度,如果协方差为正,说明两个变量正相关;如果协方差为负,说明两个变量负相关;如果协方差为零,说明两个变量无相关性。

np.cov()的用法如下:

np.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)

参数说明:

  • m: 一个一维或二维的数组,表示多个变量和观测值。如果是一维数组,表示一个变量的观测值;如果是二维数组,每一行表示一个变量,每一列表示一个观测值。
  • y: 可选参数,另一个一维或二维的数组,表示另一组变量和观测值,必须和m具有相同的形状。
  • rowvar: 可选参数,布尔值,默认为True。如果为True,表示每一行代表一个变量;如果为False,表示每一列代表一个变量。
  • bias: 可选参数,布尔值,默认为False。如果为False,表示计算无偏协方差(除以n-1);如果为True,表示计算有偏协方差(除以n)。
  • ddof: 可选参数,整数,默认为None。如果不为None,则覆盖由bias隐含的默认值。ddof=0表示计算有偏协方差;ddof=1表示计算无偏协方差。
  • fweights: 可选参数,一维数组或整数,默认为None。表示每次观测的频率权重。
  • aweights: 可选参数,一维数组,默认为None。表示每个变量的可靠性权重。

返回值:

  • 一个二维数组,表示协方差矩阵。

举例说明:文章来源地址https://www.toymoban.com/news/detail-404098.html

import numpy as np

# 生成两组随机数据
x = np.random.randn(10)
y = np.random.randn(10)

# 计算x和y的协方差矩阵
cov_xy = np.cov(x,y)
print(cov_xy)
# 输出:
[[ 0.8136679  -0.01594772]
 [-0.01594772  0.84955963]]

# 计算x和y的相关系数矩阵
corr_xy = np.corrcoef(x,y)
print(corr_xy)
# 输出:
[[ 1.         -0.01904402]
 [-0.01904402  1.        ]]

到了这里,关于机器学习(五):混合高斯聚类GMM(求聚类标签)+PCA降维(3维降2维)习题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • PyTorch深度学习实战 | 高斯混合模型聚类原理分析

    为理解高斯混合模型解决聚类问题的原理,本实例采用三个一元高斯函数混合构成原始数据,再采用GMM来聚类。 1) 数据 三个一元高斯组件函数可以采用均值和协方差表示如表1所示: ▍表1 三个一元高斯组件函数的均值和协方差 每个高斯组件函数分配不同的权重,其中1号组

    2024年02月01日
    浏览(36)
  • 【MATLAB第61期】基于MATLAB的GMM高斯混合模型回归数据预测

    高斯混合模型GMM广泛应用于数据挖掘、模式识别、机器学习和统计分析。其中,它们的参数通常由最大似然和EM算法确定。 关键思想是使用高斯混合模型对数据(包括输入和输出)的联合概率密度函数进行建模。 文献参考:https://doi.org/10.1016/j.specom.2012.06.005。 使用工具箱ne

    2024年02月15日
    浏览(33)
  • 使用高斯混合模型进行聚类

            高斯混合模型 (GMM) 是一种基于概率密度估计的聚类分析技术。它假设数据点是由具有不同均值和方差的多个高斯分布的混合生成的。它可以在某些结果中提供有效的聚类结果。         K 均值聚类算法在每个聚类的中心周围放置一个圆形边界。当数据具有圆

    2024年02月09日
    浏览(27)
  • 基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 2.1 Python 2.2 Matlab 🎉3 参考文献 🌈4 Matla

    2024年02月15日
    浏览(29)
  • 【CNN-BiLSTM-attention】基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 2.1 Python 2.2 Matlab 🎉3 参考文献 🌈4 Matla

    2024年02月14日
    浏览(32)
  • 时序预测 | Matlab+Python实现基于高斯混合模型聚类结合CNN-BiLSTM-Attention的风电场短期功率预测

    效果一览 基本介绍 基于高斯混合模型聚类结合CNN-BiLSTM-Attention的风电场短期功率预测(Matlab+Python完整源码和数据) 该方法结合数据分布特征,利用 GMM 聚类将大型风电场划分为若干机组群,借助贝叶斯信息准则指标评价,获得风电场内最优机组分组方案。最后,基于CNN-BiLSTM-

    2024年02月16日
    浏览(25)
  • 机器学习-PCA降维【手撕】

    降维算法中的”降维“,指的是降低特征矩阵中特征的数量,其目的是为了让算法运算更快,效果更好,同时可以方便数据可视化。过高的维度特征维度的特征矩阵无法通过可视化,数据的性质也就比较难理解。其中主要用到的降维方法为PCA和SVD 在降维中,我们会减少特征的

    2024年01月24日
    浏览(39)
  • 【机器学习】十大算法之一 “PCA”

      作者主页: 爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主 爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域. https://blog.csdn.net/Code_and516?type=blog 个人简介:打工人。 持续分

    2024年02月11日
    浏览(24)
  • 机器学习——主成成分分析PCA

    如上图所示,一共有4个属性,身高( m为单位),身高(cm),时速(每小时公里),时速(每小时里),身高的两个属性是相关的,时速的两个属性也是相关的,我们把四组具有相关性的变量转换成了两组不相关的变量,我们把转换后的这2组变量称为它的主成分。说白了,就

    2024年01月18日
    浏览(37)
  • 【Educoder】— 机器学习(PCA第二关)

    目录 任务描述 相关知识 PCA与降维 1. demean 2. 协方差矩阵 3. 特征值与特征向量 编程要求 测试说明 PCA第二关—PCA算法流程 本关任务:补充 python 代码,完成 PCA 函数,实现降维功能。 为了完成本关任务,你需要掌握: demean; 协方差; 特征值分解; PCA 算法流程。 降维的方法

    2024年02月10日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包