YOLOV5超参数设置与数据增强解析

这篇具有很好参考价值的文章主要介绍了YOLOV5超参数设置与数据增强解析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、YOLOV5的超参数配置文件介绍

YOLOv5有大约30个超参数用于各种训练设置。它们在*xml中定义。/data目录下的Yaml文件。更好的初始猜测将产生更好的最终结果,因此在进化之前正确地初始化这些值是很重要的。如果有疑问,只需使用缺省值,这些缺省值是为YOLOv5 COCO训练从头优化的。

YOLOv5的超参文件见data/hyp.finetune.yaml(适用VOC数据集)或者hyo.scrach.yaml(适用COCO数据集)文件

1、yolov5/data/hyps/hyp.scratch-low.yaml(YOLOv5 COCO训练从头优化,数据增强低)

# Hyperparameters for low-augmentation COCO training from scratch 
 # python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear 
 # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials 
  
 lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3) 初始学习速率
 lrf: 0.01  # final OneCycleLR learning rate (lr0 * lrf) ,最终OneCycleLR学习率
 momentum: 0.937  # SGD momentum/Adam beta1 
 weight_decay: 0.0005  # optimizer weight decay 5e-4 ,权重衰变
 warmup_epochs: 3.0  # warmup epochs (fractions ok) 学习率热身epoch
 warmup_momentum: 0.8  # warmup initial momentum 学习率热身初始动量
 warmup_bias_lr: 0.1  # warmup initial bias lr 学习率热身偏执学习率
 box: 0.05  # box loss gain 
 cls: 0.5  # cls loss gain 
 cls_pw: 1.0  # cls BCELoss positive_weight 
 obj: 1.0  # obj loss gain (scale with pixels) 
 obj_pw: 1.0  # obj BCELoss positive_weight 
 iou_t: 0.20  # IoU training threshold 
 anchor_t: 4.0  # anchor-multiple threshold 
 # anchors: 3  # anchors per output layer (0 to ignore) 
 fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5) 
 #颜色亮度,色调(Hue)、饱和度(Saturation)
 hsv_h: 0.015  # image HSV-Hue augmentation (fraction) 
 hsv_s: 0.7  # image HSV-Saturation augmentation (fraction) 
 hsv_v: 0.4  # image HSV-Value augmentation (fraction) 
 #图像旋转
 degrees: 0.0  # image rotation (+/- deg) 
 #图像平移
 translate: 0.1  # image translation (+/- fraction) 
 ##图像仿射变换的缩放比例
 scale: 0.5  # image scale (+/- gain) 
 #设置裁剪的仿射矩阵系数
 shear: 0.0  # image shear (+/- deg) 
 #透视变换
 perspective: 0.0  # image perspective (+/- fraction), range 0-0.001 ,range 0-0.001 0.0:仿射变换,>0为透视变换
 flipud: 0.0  # image flip up-down (probability) 
 fliplr: 0.5  # image flip left-right (probability) 
 mosaic: 1.0  # image mosaic (probability) 
 mixup: 0.0  # image mixup (probability) #在mosaic启用时,才可以启用
 copy_paste: 0.0  # segment copy-paste (probability),在mosaic启用时,才可以启用 

2、yolov5/data/hyps/hyp.scratch-mdeia.yaml(数据增强中)

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for medium-augmentation COCO training from scratch
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials

lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.1  # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937  # SGD momentum/Adam beta1
weight_decay: 0.0005  # optimizer weight decay 5e-4
warmup_epochs: 3.0  # warmup epochs (fractions ok)
warmup_momentum: 0.8  # warmup initial momentum
warmup_bias_lr: 0.1  # warmup initial bias lr
box: 0.05  # box loss gain
cls: 0.3  # cls loss gain
cls_pw: 1.0  # cls BCELoss positive_weight
obj: 0.7  # obj loss gain (scale with pixels)
obj_pw: 1.0  # obj BCELoss positive_weight
iou_t: 0.20  # IoU training threshold
anchor_t: 4.0  # anchor-multiple threshold
# anchors: 3  # anchors per output layer (0 to ignore)
fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4  # image HSV-Value augmentation (fraction)
degrees: 0.0  # image rotation (+/- deg)
translate: 0.1  # image translation (+/- fraction)
scale: 0.9  # image scale (+/- gain)
shear: 0.0  # image shear (+/- deg)
perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
flipud: 0.0  # image flip up-down (probability)
fliplr: 0.5  # image flip left-right (probability)
mosaic: 1.0  # image mosaic (probability)
mixup: 0.1  # image mixup (probability)
copy_paste: 0.0  # segment copy-paste (probability)

3、hyp.scratch-high.yaml(数据增强高)

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for high-augmentation COCO training from scratch
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials

lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.1  # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937  # SGD momentum/Adam beta1
weight_decay: 0.0005  # optimizer weight decay 5e-4
warmup_epochs: 3.0  # warmup epochs (fractions ok)
warmup_momentum: 0.8  # warmup initial momentum
warmup_bias_lr: 0.1  # warmup initial bias lr
box: 0.05  # box loss gain
cls: 0.3  # cls loss gain
cls_pw: 1.0  # cls BCELoss positive_weight
obj: 0.7  # obj loss gain (scale with pixels)
obj_pw: 1.0  # obj BCELoss positive_weight
iou_t: 0.20  # IoU training threshold
anchor_t: 4.0  # anchor-multiple threshold
# anchors: 3  # anchors per output layer (0 to ignore)
fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4  # image HSV-Value augmentation (fraction)
degrees: 0.0  # image rotation (+/- deg)
translate: 0.1  # image translation (+/- fraction)
scale: 0.9  # image scale (+/- gain)
shear: 0.0  # image shear (+/- deg)
perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
flipud: 0.0  # image flip up-down (probability)
fliplr: 0.5  # image flip left-right (probability)
mosaic: 1.0  # image mosaic (probability)
mixup: 0.1  # image mixup (probability)
copy_paste: 0.1  # segment copy-paste (probability)

2、OneCycleLR学习率

根据“OneCycleLR学习率”策略,设置各参数组的学习率。1cycle策略将学习率从初始学习率退火到最大学习率,然后从最大学习率退火到远低于初始学习率的最小学习率。论文地址

3、Warmup

warmup是一种学习率优化方法,最早出现在resnet论文中,在模型训练初期选用较小的学习率,训练一段时间之后(10epoch 或者 10000steps)使用预设的学习率进行训练

为什么使用

模型训练初期,权重随机化,对数据的理解为0,在第一个epoch中,模型会根据输入的数据进行快速的调参,此时如果采用较大的学习率,有很大的可能使模型学偏,后续需要更多的轮次才能拉回来

当模型训练一段时间之后,对数据有一定的先验知识,此时使用较大的学习率模型不容易学偏,可以使用较大的学习率加速训练。

当模型使用较大的学习率训练一段时间之后,模型的分布相对比较稳定,此时不宜从数据中再学到新的特点,如果继续使用较大的学习率会破坏模型的稳定性,而使用较小的学习率更获得最优。

Pytorch内部并没有warmup的接口,为此需要使用第三方包pytorch_warmup ,可以使用命令pip install pytorch_warmup进行安装

1、当学习率计划使用全局迭代数时,未调优的线性预热可以这样使用:

import torch
import pytorch_warmup as warmup

optimizer = torch.optim.AdamW(params, lr=0.001, betas=(0.9, 0.999), weight_decay=0.01)
num_steps = len(dataloader) * num_epochs
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_steps)
warmup_scheduler = warmup.UntunedLinearWarmup(optimizer)
for epoch in range(1,num_epochs+1):
    for batch in dataloader:
        optimizer.zero_grad()
        loss = ...
        loss.backward()
        optimizer.step()
        with warmup_scheduler.dampening():
            lr_scheduler.step()

2、如果你想使用PyTorch 1.4.0或更高版本支持的学习率调度“链接”,你可以简单地给出一组with语句的学习率调度程序代码:

lr_scheduler1 = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
lr_scheduler2 = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
warmup_scheduler = warmup.UntunedLinearWarmup(optimizer)
for epoch in range(1,num_epochs+1):
    for batch in dataloader:
        ...
        optimizer.step()
        with warmup_scheduler.dampening():
            lr_scheduler1.step()
            lr_scheduler2.step()

3、当学习率计划使用epoch号时,预热计划可以这样使用:

lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[num_epochs//3], gamma=0.1)
warmup_scheduler = warmup.UntunedLinearWarmup(optimizer)
for epoch in range(1,num_epochs+1):
    for iter, batch in enumerate(dataloader):
        optimizer.zero_grad()
        loss = ...
        loss.backward()
        optimizer.step()
        if iter < len(dataloader)-1:
            with warmup_scheduler.dampening():
                pass
    with warmup_scheduler.dampening():
        lr_scheduler.step()

4、Warmup Schedules

1、Manual Warmup

预热因子w(t)取决于预热期,必须手动指定线性预热和指数预热。

1、 Linear
w(t) = min(1, t / warmup_period)
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period=2000)
2、 Exponential
warmup_period = 1 / (1 - beta2)

warmup_scheduler = warmup.UntunedExponentialWarmup(optimizer)
3、 RAdam Warmup

The warmup factor depends on Adam’s beta2 parameter for RAdamWarmup. Please see the original paper for the details.

warmup_scheduler = warmup.RAdamWarmup(optimizer)
4、 Apex’s Adam

The Apex library provides an Adam optimizer tuned for CUDA devices, FusedAdam. The FusedAdam optimizer can be used with the warmup schedulers. For example:

optimizer = apex.optimizers.FusedAdam(params, lr=0.001, betas=(0.9, 0.999), weight_decay=0.01)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_steps)
warmup_scheduler = warmup.UntunedLinearWarmup(optimizer)

4、YOLOV5数据增强(yolov5-v6\utils\datasets.py)

目标检测 YOLOv5 - 数据增强
Yolov5(v6.1)数据增强方式解析
一旦训练开始,您可以在train_batch*.jpg图像中查看增强策略的效果。这些图像将在你的火车日志目录中,通常是yolov5/runs/train/exp:
train_batch0.jpg shows train batch 0 mosaics and labels:
YOLOV5超参数设置与数据增强解析
YOLOV5超参数设置与数据增强解析
YOLOV5超参数设置与数据增强解析

5、 YOLOv5集成Albumentations,添加新的数据增强方法

To use albumentations simply pip install -U albumentations and then update the augmentation pipeline as you see fit in the new Albumentations class in yolov5/utils/augmentations.py. Note these Albumentations operations run in addition to the YOLOv5 hyperparameter augmentations, i.e. defined in hyp.scratch.yaml.

Here’s an example that applies Blur, MedianBlur and ToGray albumentations in addition to the YOLOv5 hyperparameter augmentations normally applied to your training mosaics 😃

class Albumentations:
    # YOLOv5 Albumentations class (optional, used if package is installed)
    def __init__(self):
        self.transform = None
        try:
            import albumentations as A
            check_version(A.__version__, '1.0.3')  # version requirement

            self.transform = A.Compose([
                A.Blur(blur_limit=50, p=0.1),
                A.MedianBlur(blur_limit=51, p=0.1),
                A.ToGray(p=0.3)],
                bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))

            logging.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms))
        except ImportError:  # package not installed, skip
            pass
        except Exception as e:
            logging.info(colorstr('albumentations: ') + f'{e}')

    def __call__(self, im, labels, p=1.0):
        if self.transform and random.random() < p:
            new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0])  # transformed
            im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
        return im, labels

YOLOV5超参数设置与数据增强解析
##您可以在YOLOv5数据加载器中集成额外的Albumentations增强功能:
在YOLOv5数据加载器中插入albumentaugment功能的最佳位置是这里:

if self.augment: 
     # Augment imagespace 
     if not mosaic: 
         img, labels = random_perspective(img, labels, 
                                          degrees=hyp['degrees'], 
                                          translate=hyp['translate'], 
                                          scale=hyp['scale'], 
                                          shear=hyp['shear'], 
                                          perspective=hyp['perspective']) 
  
     # Augment colorspace 
     augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) 
  
     # Apply cutouts 
     # if random.random() < 0.9: 
     #     labels = cutout(img, labels) 

其中img为图像,label为边框标签。请注意,您添加的任何albuments增强都将是对超参数文件中定义的现有自动YOLOv5增强的补充:

6、定义评估指标

健康是我们追求的价值最大化。在YOLOv5中,我们将默认适应度函数定义为指标的加权组合:mAP@0.5占权重的10%,mAP@0.5:0.95占剩余的90%,没有Precision P和Recall R。您可以根据自己的需要进行调整,或者使用默认的适合度定义(推荐)。

yolov5/utils/metrics.py

Lines 12 to 16 in 4103ce9

 def fitness(x): 
     # Model fitness as a weighted combination of metrics 
     w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95] 
     return (x[:, :4] * w).sum(1) 

7、 Evolve(模型参数更新进化)

# Single-GPU
python train.py --epochs 10 --data coco128.yaml --weights yolov5s.pt --cache --evolve

# Multi-GPU
for i in 0 1 2 3 4 5 6 7; do
  sleep $(expr 30 \* $i) &&  # 30-second delay (optional)
  echo 'Starting GPU '$i'...' &&
  nohup python train.py --epochs 10 --data coco128.yaml --weights yolov5s.pt --cache --device $i --evolve > evolve_gpu_$i.log &
done

# Multi-GPU bash-while (not recommended)
for i in 0 1 2 3 4 5 6 7; do
  sleep $(expr 30 \* $i) &&  # 30-second delay (optional)
  echo 'Starting GPU '$i'...' &&
  "$(while true; do nohup python train.py... --device $i --evolve 1 > evolve_gpu_$i.log; done)" &
done
# YOLOv5 Hyperparameter Evolution Results
# Best generation: 287
# Last generation: 300
#    metrics/precision,       metrics/recall,      metrics/mAP_0.5, metrics/mAP_0.5:0.95,         val/box_loss,         val/obj_loss,         val/cls_loss
#              0.54634,              0.55625,              0.58201,              0.33665,             0.056451,             0.042892,             0.013441

lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.2  # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937  # SGD momentum/Adam beta1
weight_decay: 0.0005  # optimizer weight decay 5e-4
warmup_epochs: 3.0  # warmup epochs (fractions ok)
warmup_momentum: 0.8  # warmup initial momentum
warmup_bias_lr: 0.1  # warmup initial bias lr
box: 0.05  # box loss gain
cls: 0.5  # cls loss gain
cls_pw: 1.0  # cls BCELoss positive_weight
obj: 1.0  # obj loss gain (scale with pixels)
obj_pw: 1.0  # obj BCELoss positive_weight
iou_t: 0.20  # IoU training threshold
anchor_t: 4.0  # anchor-multiple threshold
# anchors: 3  # anchors per output layer (0 to ignore)
fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4  # image HSV-Value augmentation (fraction)
degrees: 0.0  # image rotation (+/- deg)
translate: 0.1  # image translation (+/- fraction)
scale: 0.5  # image scale (+/- gain)
shear: 0.0  # image shear (+/- deg)
perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
flipud: 0.0  # image flip up-down (probability)
fliplr: 0.5  # image flip left-right (probability)
mosaic: 1.0  # image mosaic (probability)
mixup: 0.0  # image mixup (probability)
copy_paste: 0.0  # segment copy-paste (probability)

YOLOV5超参数设置与数据增强解析
我们建议至少300代的进化才能获得最好的结果。请注意,进化通常是昂贵和耗时的,因为基本场景要训练数百次,可能需要数百或数千个GPU小时。

8、 超参数可视化

evolve.csv is plotted as evolve.png by utils.plots.plot_evolve() after evolution finishes with one subplot per hyperparameter showing fitness (y axis) vs hyperparameter values (x axis). Yellow indicates higher concentrations. Vertical distributions indicate that a parameter has been disabled and does not mutate. This is user selectable in the meta dictionary in train.py, and is useful for fixing parameters and preventing them from evolving.
YOLOV5超参数设置与数据增强解析文章来源地址https://www.toymoban.com/news/detail-404247.html

到了这里,关于YOLOV5超参数设置与数据增强解析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOv5超参数、迁移训练设置

    目录 一、超参数设置 1. 定义自适应函数 2. 定义模型深度和宽度 二、迁移训练设置 1. 为迁移训练设置冻结层 遗传算法中适应度(fitness)是描述个体性能的主要指标,直接影响到算法的收敛速度以及能否找到最优解。适应度是训练中寻求最大化的一个值。YOLOv5默认的适应度函

    2024年02月08日
    浏览(55)
  • 为YOLOv5、YOLOv8带来全新的数据增强方式-合成雾增强算法

    BestYOLO:https://github.com/WangRongsheng/BestYOLO BestYOLO 是一个以科研和竞赛为导向的最好的 YOLO 实践框架! 目前 BestYOLO 是一个完全基于 YOLOv5 v7.0 进行改进的开源库,该库将始终秉持以落地应用为导向,以轻便化使用为宗旨,简化各种模块的改进。目前已经集成了基于 torchvision.model

    2024年02月03日
    浏览(33)
  • YOLOv5的Tricks | 【Trick12】YOLOv5使用的数据增强方法汇总

    如有错误,恳请指出。 时隔两个多月重新看yolov5的代码显然开始力不从心,当时应该一鼓作气的整理完的。在专栏前面的内容一直介绍的是yolov5训练时候使用的一些技巧, 这里用这篇博客最后归纳一下yolov5在数据增强上所使用的技巧。 在yolov3-spp专栏的时候,我介绍过yolov

    2024年01月17日
    浏览(41)
  • YOLOv5(v6.1)解析(四)超参数进化

    本文对YOLOv5项目的超参数算法进行详细阐述,笔者以后会定期讲解关于模型的其他的模块与相关技术,笔者也建立了一个关于目标检测的交流群:781334731,欢迎大家踊跃加入,一起学习鸭! 源码地址:https://github.com/ultralytics/yolov5 打开网址后,点击master可选取不同版本的分支

    2024年02月09日
    浏览(37)
  • 了解 YOLOv5 中的 NMS 多标签检测参数设置

    “NMS 多标签检测”(multi_label = False)是一个关于 YOLOv5 模型推理设置的参数,具体来说,它控制非最大抑制(NMS)的行为。要理解这个设置,我们首先需要了解 NMS 和它在目标检测中的作用。 非最大抑制 (NMS) 在目标检测任务中,模型会对图像中可能存在的每个目标输出多个

    2024年01月19日
    浏览(43)
  • 【YOLOV5-6.x讲解】数据增强方式介绍+代码实现

    【YOLOV5-6.x 版本讲解】整体项目代码注释导航 现在YOLOV5已经更新到6.X版本,现在网上很多还停留在5.X的源码注释上,因此特开一贴传承开源精神!5.X版本的可以看其他大佬的帖子本文章主要从6.X版本出发,主要解决6.X版本的项目注释与代码分析!...... https://blog.csdn.net/qq_3923

    2023年04月09日
    浏览(40)
  • YOLOv5源码中的参数超详细解析(2)— 配置文件yolov5s.yaml(包括源码+网络结构图)

    前言: Hello大家好,我是小哥谈。 配置文件yolov5s.yaml在YOLOv5模型训练过程中发挥着至关重要的作用,属于初学者必知必会的文件!在YOLOv5-6.0版本源码中,配置了5种不同大小的网络模型,分别是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x,其中YOLOv5n是网络深度和宽度最小但检测速度

    2024年02月08日
    浏览(50)
  • 【YOLOv5-6.x】模型参数量param及计算量FLOPs解析

    评价一个用深度学习框架搭建的神经网络模型,除了精确度(比如目标检测中常用的map)指标之外,模型复杂度也必须要考虑,通常用正向推理的计算量(FLOPs)和参数个数(Parameters)来描述模型的复杂度。   参数量 有参数的层主要包括: 卷积层 全连接层 BN层 Embedding层 少数激活

    2024年02月04日
    浏览(47)
  • YOLOv7、YOLOv5改进之损失函数EfficiCIoU-Loss:独家首发最新|结合EfficiCIoULoss损失函数(适用于YOLOv5),新的增强预测帧调整并加快帧回归率,加快网络模型收敛

    💡该教程为属于 《芒果书》 📚系列,包含大量的原创首发改进方式, 所有文章都是全网首发原创改进内容🚀 💡本篇文章 为 YOLOv5、YOLOv7、YOLOv8 芒果改进YOLO系列: YOLOv7改进损失函数:独家首发最新|结合EfficiCIoU-Loss损失函数,新的增强预测帧调整并加快帧回归率,加快网

    2024年02月05日
    浏览(54)
  • yolov5结果解析

    以这种形式给出矩阵的值 g t c l a s s 1 gt_{class1} g t c l a ss 1 ​ g t c l a s s 2 gt_{class2} g t c l a ss 2 ​ g t c l a s s 3 gt_{class3} g t c l a ss 3 ​ background FP p r e d c l a s s 1 pred_{class1} p re d c l a ss 1 ​ p r e d c l a s s 2 pred_{class2} p re d c l a ss 2 ​ p r e d c l a s s 3 pred_{class3} p re d c l a ss 3 ​ bac

    2024年02月04日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包