用于微小目标检测的上下文扩展和特征细化网络

这篇具有很好参考价值的文章主要介绍了用于微小目标检测的上下文扩展和特征细化网络。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

用于微小目标检测的上下文扩展和特征细化网络

       这是一篇ICLR 2022的会议论文,ICLR由Lecun,Hinton和Bengio三位神经网络的元老联手发起。近年来随着深度学习在工程实践中的成功,ICLR会议也在短短的几年中发展成为了神经网络的顶会。哎,我也想发这样的文章,今天我们就来看看这篇文章的成功之处,虽然论文给了代码但是现在打不开或者无法访问到,裂开了! 但是这篇文章的实验做得还是挺充分的,可视化也挺好,属于比较不错的一类,自己达不到的水平,哈哈!

        微小物体由于分辨率低、体积小,很难被探测到。网络的局限性和训练数据集的不平衡是导致微小目标检测性能不佳的主要原因该文提出了一种复合结构的FPN,它包含一个上下文扩展模块和一个特征细化模块。上下文增强模块利用扩展卷积提取不同接收域的上下文信息,并将其集成到FPN中,对微小物体的上下文信息进行改进。特征细化模块结合了空间自适应融合信道自适应融合,从信道和空间维度抑制冲突特征,突出有用特征。此外,为了防止训练不平衡,提出了一种微小对象的复制-减少-粘贴数据增强方法。

        金字塔结构FPN可以在一定程度上缓解信息扩散问题,通过水平融合低分辨率特征图和高分辨率特征图。但是,直接融合不同密度的信息会导致语义冲突,限制了多尺度特征的表达,容易使微小的物体淹没在冲突的信息中。同时,在当前的经典公共数据集中,微小对象的注释数量远远少于较大目标的注释数量(Chen et al, 2020)。因此,在训练过程中,网络的收敛方向不断向较大的目标倾斜,导致对微小目标的性能较差。因此作者从这两方面作为突破口进行改进来提升小目标检测。为解决微小物体特征分散(意思就是小物体分布的非常散,并不是聚集在一起的)和层间语义差异(不同的层所代表的语义信息会产生混乱,比如说深层特征中包含的小目标信息较少,但是有时候影响到大目标的预测结果)的问题,提出了一种结合上下文增强和特征细化的特征金字塔复合神经网络结构。提出的算法框架如下图所示。在整体网络结构。CAM和FRM是该网络的主要组成部分。CAM向FPN注入上下文信息,FRM对FPN的冲突信息进行过滤。

用于微小目标检测的上下文扩展和特征细化网络一、上下文增强模块(CAM,CONTEXT AUGMENTATION MODULE) 

        微小目标检测需要上下文信息。我们提出使用具有不同扩张卷积率的扩张卷积来获取不同接受域的上下文信息,以丰富FPN的上下文信息。如下图所示,这就是常用的ASPP,当然如果只是这样引用肯定是不行的,所以作者做了下面的事情。

用于微小目标检测的上下文扩展和特征细化网络

 作者又将这样的ASPP模块的融合方式通过下面三种方式进行实验,其中(a)和(c)方式就是一般的进行相加和拼接,几种不同的特征的权重是相同的,而对于(b)方式就是将最终结果再通过一个注意力机制进行重要性分析。一般来说第二种方式是比较不错的,因为这种方法我是在其他论文上见过的,在那篇小目标检测论文中,(b)的方式是一个创新点部分。但是在这篇文章中,作者通过实验直接得到(c)的融合方式对小目标的检测是最好的。如下表所示。用于微小目标检测的上下文扩展和特征细化网络

 不同的融合方式

用于微小目标检测的上下文扩展和特征细化网络

 不同的融合方式的实验结果

二、功能模块细化(FRM,FEATURE REFINEMENT MODULE)

        这一部分的内容就是用来过滤冲突信息,防止微小物体的特征直接被淹没在冲突信息中,因为在FPN中对不同尺度进行融合,容易产生大量的冗余信息和冲突信息,从而降低了多尺度表达能力。具体结构如下图所示:

用于微小目标检测的上下文扩展和特征细化网络        该结构分为两种模块,分别是通道上的过滤模块以及空间上的过滤模块,对于通道净化模块,作者首先使用两种池化方法,然后将自适应平均池和自适应最大池相结合,获得更精细的图像全局特征。空间过滤模块 通过softmax生成各位置相对于通道的相对权重。至于一些公式,其实还是得看源码。当然其实也并不是特别的难,就是对不同的特征层自适应的赋予不同的权重。

三、COPY-REDUCE-PASTE数据增强

        在目前的主流公共数据集中,小目标产生的正样本数量和对小目标损失的贡献都远远小于大目标,使得收敛方向向大目标倾斜。为了缓解这一问题,我们在训练过程中对目标进行复制、缩小和粘贴。通过增加图像中微小物体的数量和包含微小物体的图像数量,增加了对微小物体丢失的贡献,使训练更加平衡。下图是每个目标在不同位置粘贴一次的结果。通过这种方法,极大地丰富了微小物体的数量和上下文信息。​​​​​​​从下表可以看出,随着粘贴次数的增加,微小物体的检测性能逐渐下降,甚至可能低于基线。这可能是因为随着粘贴次数的增加,数据集的分布逐渐被破坏,使得测试集中的性能变差。实验结果表明,涂一次为最佳凝固时间。用于微小目标检测的上下文扩展和特征细化网络

 后面就是一些可视化实验结果以及数据结果的内容了,感兴趣的效果伴可以自行学习哈!文章来源地址https://www.toymoban.com/news/detail-404381.html

到了这里,关于用于微小目标检测的上下文扩展和特征细化网络的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Query Rewrite —— 基于大模型的query扩展改写,综合考虑上下文信息(人大论文)

    在session上下文中,捕获用户的搜索意图,是一件较为复杂和困难的事情。 一起看一下人大的这篇论文 Large Language Models Know Your Contextual Search Intent: A Prompting Framework for Conversational Search   人大的论文中提出了一个简单而有效的提示框架,称为LLM4CS,以利用LLM作为搜索意图解释

    2024年02月19日
    浏览(33)
  • 符尧大佬一作发文,仅改训练数据,就让LLaMa-2上下文长度扩展20倍!

    近日,谷歌推出了Gemini Pro 1.5,将上下文窗口长度扩展到100万个tokens,目前领先世界。而其他语言模型也正在不断探索长上下文能力,也就是模型处理和理解超出其训练时所见上下文长度的能力。例如,一个模型可能在训练时只看到了每个输入中的4K tokens,但在实际应用中,

    2024年03月11日
    浏览(46)
  • 神经数据库:用于使用 ChatGPT 构建专用 AI 代理的下一代上下文检索系统 — (第 2/3 部分)

    书接上回理解构建LLM驱动的聊天机器人时的向量数据库检索的局限性 - (第1/3部分)_阿尔法旺旺的博客-CSDN博客 其中我们强调了( 1 )嵌入生成,然后( 2 )使用近似近邻( ANN )搜索进行矢量搜索的解耦架构的缺点。我们讨论了生成式 AI 模型生成的向量嵌入之间的余弦相似

    2024年02月15日
    浏览(47)
  • 【二开】JeecgBoot-vue3二次开发 前端 扩展online表单js增强等-在表单里拿到列表上下文onlineTableContext

    【二开】JeecgBoot-vue3二次开发 前端 扩展online表单js增强等-在表单里拿到列表上下文 对应的属性方法 acceptHrefParams \\\"p 跳转时获取的参数信息\\\" currentPage \\\"p 当前页数\\\" currentTableName \\\"p 当前表名\\\" description \\\"p 当前表描述\\\" hasChildrenField \\\"p 是否有子节点的字段名,仅树形表单下有效\\\" is

    2024年02月15日
    浏览(44)
  • 【python】flask执行上下文context,请求上下文和应用上下文原理解析

    ✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN新星创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开

    2024年03月26日
    浏览(65)
  • 超长上下文处理:基于Transformer上下文处理常见方法梳理

    原文链接:芝士AI吃鱼 目前已经采用多种方法来增加Transformer的上下文长度,主要侧重于缓解注意力计算的二次复杂度。 例如,Transformer-XL通过缓存先前的上下文,并允许随着层数的增加线性扩展上下文。Longformer采用了一种注意力机制,使得token稀疏地关注远距离的token,从而

    2024年02月13日
    浏览(52)
  • 无限上下文,多级内存管理!突破ChatGPT等大语言模型上下文限制

    目前,ChatGPT、Llama 2、文心一言等主流大语言模型,因技术架构的问题上下文输入一直受到限制,即便是Claude 最多只支持10万token输入,这对于解读上百页报告、书籍、论文来说非常不方便。 为了解决这一难题,加州伯克利分校受操作系统的内存管理机制启发,提出了MemGPT。

    2024年02月06日
    浏览(64)
  • 从零开始理解Linux中断架构(7)--- Linux执行上下文之中断上下文

            当前运行的loop是一条执行流,中断程序运行开启了另外一条执行流,从上一节得知这是三种跳转的第三类,这个是一个大跳转。对中断程序的基本要求就是 中断执行完毕后要恢复到原来执行的程序 ,除了时间流逝外,原来运行的程序应该毫无感知。        

    2024年02月11日
    浏览(67)
  • 〖大前端 - 基础入门三大核心之JS篇(51)〗- 面向对象之认识上下文与上下文规则

    说明:该文属于 大前端全栈架构白宝书专栏, 目前阶段免费 , 如需要项目实战或者是体系化资源,文末名片加V! 作者:哈哥撩编程,十余年工作经验, 从事过全栈研发、产品经理等工作,目前在公司担任研发部门CTO。 荣誉: 2022年度博客之星Top4、2023年度超级个体得主、谷

    2024年02月05日
    浏览(61)
  • 执行上下文

    通过var定义(声明)的变量--在定义语句之前就可以访问到 值为undefined 通过function声明的函数--在之前就可以直接调用 值为函数定义(对象) 全局代码 函数(局部)代码 在执行全局代码前将window确定为全局执行上下文 对全局数据进行预处理 var定义的全局变量--undefined--添加

    2023年04月20日
    浏览(58)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包