深度学习中的算法学习与记忆,利用故事联想帮助大家记忆,每个人都会

这篇具有很好参考价值的文章主要介绍了深度学习中的算法学习与记忆,利用故事联想帮助大家记忆,每个人都会。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大家好,我是微学AI,大家看过我的文章,想必是对深度学习有了一定的了解了,但是对于初学者来说,深度学习中有很多名词和数学知识、原理还是不太清楚,记忆的不牢固,用起来不熟练,今天就给大家讲一个故事,让大家记忆得更清楚:

故事开始:

有一位名叫小微的数学科学家,他有一个目标:要用计算机让机器具备类似于人类的智能。为了实现这个目标,他研究了很多算法,其中包括神经网络卷积神经网络循环神经网络、以及很多算法模型

首先,小微深入研究了神经网络。他发现神经网络的结构类似于人脑。它由输入、隐藏和输出三个层次组成,每个层次由一些神经元组成。神经元接收输入信号,并把信号通过激活函数输出到下一层次。通过反向传播算法,小微总结出寻找最优解的方法,也就是不停地去调整神经元之间的连接权重,直到得到最佳计算结果。这个方法被称为梯度下降算法

深度学习中的算法学习与记忆,利用故事联想帮助大家记忆,每个人都会

接着,小微觉得之前神经网络输入是一维特征向量,如果是二维的图像输入会是什么样的呢?于是他探索了卷积神经网络。他发现这种网络结构在处理图像和视频等数据上非常有效。卷积神经网络由卷积层池化层全连接层三个部分组成。卷积层通过滤波器捕捉输入数据中的特征,池化层用于对数据进行下采样,全连接层将汇总的数据映射到最终的输出。小微深入研究了卷积神经网络的训练过程,并利用反向传播算法的技术,可以通过不断地反馈误差信号来优化网络的参数,从而提高网络的性能。深度学习中的算法学习与记忆,利用故事联想帮助大家记忆,每个人都会

小微后面发现前面都是处理结构化表格数据和图像数据,那么对于语音、文本、音乐等数据好像不能适用了,于是他探索了循环神经网络。他发现这种网络结构非常适合处理序列数据。循环神经网络的结构与神经网络类似,但是神经元之间的连接形成了循环,以便它们可以记住之前的状态,并在当前状态下进一步处理数据。小微深入研究了循环神经网络的训练方法,并发现了一种叫做长短时记忆(LSTM)的技术,它可以让循环神经网络更好地处理长期的依赖关系。LSTM网络中的门机制可以控制信息的输入、输出和遗忘,从而提高网络的性能。

深度学习中的算法学习与记忆,利用故事联想帮助大家记忆,每个人都会

小微不仅研究了神经网络、卷积神经网络和循环神经网络,随着他越来越深入的研究,还涉猎了更多深度学习领域的知识。

一天,小微听说了一种名为CRF(条件随机场)的模型,这是一种具有时序结构的概率图模型,可以处理诸如自然语言处理(NLP)中的序列标注、句法分析、话题分类等问题。

小微深入研究了CRF模型的原理和应用。他发现CRF模型的核心思想是将输入序列作为观测序列,并构建一些相关的潜变量作为标记序列。然后,通过学习样本标记序列和模型参数之间的关系,CRF模型可以判断给定观测序列的标记序列的概率。CRF模型在序列标注和结构预测等领域取得了很大成功,可以用于识别命名实体、识别情感倾向等。

深度学习中的算法学习与记忆,利用故事联想帮助大家记忆,每个人都会

对于自然语言处理,小微被transformer模型吸引。他发现,transformer模型是一种利用自注意力机制进行序列建模的深度学习模型。相较于 RNN 和 CNN,transformer 模型更高效、更容易并行化,广泛应用于神经机器翻译、文本生成、问答等任务。

小微深入研究了transformer模型的实现过程,他发现transformer模型是由编码器和解码器两个大部分主持,其中编码器和解码器主要由位置编码、自注意力机制、残差连接和前馈传播层、规范化层等部分组成。transformer采用自注意力机制对输入的序列进行编码,能够将目标和上下文联系起来,更好地捕捉序列数据之间的关系。

深度学习中的算法学习与记忆,利用故事联想帮助大家记忆,每个人都会

对于transformer模型的编码器部分,小微开始关注BERT模型。这是谷歌研究人员提出的一种预训练模型,在自然语言处理中取得了重大突破。BERT模型使用了Transformer网络的解码器部分,可以通过训练阶段学习不同自然语言处理任务之间的相似性,之后在具体任务上进行微调。

小微很激动,并立即开始研究BERT模型的工作原理。他发现,BERT模型是利用词语预测,上下文判断两大任务进行训练,并生成高质量的词向量表示。它可以对输入序列进行深度处理,并产生高质量的上下文表示。在训练阶段,BERT通过对大量语料进行无监督的预训练,获取了大量的词向量信息等,在具体任务上进行微调后,BERT可以取得很好的效果。

深度学习中的算法学习与记忆,利用故事联想帮助大家记忆,每个人都会

对于transformer模型的解码器部分,小微开始研究GPT模型,这是一种基于transformer网络的语言模型,旨在自动完成给定的NLP任务,如生成语句、问答等。

小微深入研究了GPT模型,他发现GPT模型的核心是基于transformer网络的自回归模型,每个预测token都是在之前已生成的token的基础上进行生成。 GPT模型的训练数据是大量文档,通过预测语言模型的下一个单词、句子衔接等任务的方式提高预测的精度。 GPT模型是一种非常强大的自然语言处理模型,性能在生成句子、问答等任务中表现突出,应用广泛。

小微研究了GPT系列,GPT由1代发展到3代,再到ChatGPT,这是革命性的改变,ChatGPT是美国OpenAI公司研发的功能强大的聊天机器人,他于2022年11月30日发布。ChatGPT是自然语言处理的天花板,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至可以完成论文、文案,代码的编写。

到了2023年3月14日GPT4发布,功能比ChatGPT更加强大,拥有了多模态的能力,可以读懂图片的内容。

深度学习中的算法学习与记忆,利用故事联想帮助大家记忆,每个人都会

通过不断探索新的深度学习模型和算法,小微掌握了这些网络和模型的基本原理和实战应用经验,成为了一位卓有成就的人工智能专家。文章来源地址https://www.toymoban.com/news/detail-404612.html

到了这里,关于深度学习中的算法学习与记忆,利用故事联想帮助大家记忆,每个人都会的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习中的优化算法之RMSProp

          之前在https://blog.csdn.net/fengbingchun/article/details/124766283 中介绍过深度学习中的优化算法AdaGrad,这里介绍下深度学习的另一种优化算法RMSProp。       RMSProp全称为 Root Mean Square Propagation ,是一种未发表的自适应学习率方法 ,由Geoff Hinton提出,是梯度下降优化算法的扩展。

    2023年04月08日
    浏览(27)
  • python算法中的深度学习算法之循环神经网络(详解)

    目录 学习目标: 学习内容: 循环神经网络 Ⅰ. TensorFlow  Ⅱ. Keras   

    2024年02月01日
    浏览(50)
  • 离散Hopfield神经网络的联想记忆与matlab实现

            Hopfield网络作为一种全连接型的神经网络,曾经为人工神经网络的发展开辟了新的研究途径。它利用与阶层型神经网络不同的结构特征和学习方法,模拟生物神经网络的记忆机理,获得了令人满意的结果。这一网络及学习算法最初是由美国物理学家J.JHopfield于1982年首先

    2024年02月14日
    浏览(29)
  • 【动手学深度学习】--长短期记忆网络LSTM

    学习视频:长短期记忆网络(LSTM)【动手学深度学习v2】 官方笔记:长短期记忆网络(LSTM) 长期以来,隐变量模型存在着长期信息保存和短期输入缺失的问题,解决这一问题的最早方法之一是长短期存储器(LSTM),它有许多与GRU一样的属性,有趣的是,长短期记忆网络的设计

    2024年02月09日
    浏览(60)
  • 《计算机视觉中的深度学习》之目标检测算法原理

    参考:《计算机视觉中的深度学习》 目标检测的挑战: 减少目标定位的准确度 减少背景干扰 提高目标定位的准确度 目标检测系统常用评价指标:检测速度和精度 提高精度:有效排除背景,光照和噪声的影响 提高检测速度:精简检测流程,简化图像处理算法 算法概述:传

    2024年03月27日
    浏览(60)
  • 人工智能基础部分11-图像识别实战(网络层联想记忆,代码解读)

    大家好,我叫微学AI,今天给大家带来图像识别实战项目。 图像识别实战是一个实际应用项目,下面介绍如何使用深度学习技术来识别和检测图像中的物体。主要涉及计算机视觉,实时图像处理和相关的深度学习算法。学习者将学习如何训练和使用深度学习模型来识别和检测

    2024年02月05日
    浏览(41)
  • SGD算法的优化特性及其在深度学习中的应用(OptimizationPropertiesandApplicat

    作者:禅与计算机程序设计艺术 SGD(Stochastic Gradient Descent)算法作为深度学习中最常用的优化算法之一,具有较好的全局收敛速度和稳定性。然而,在某些场景下,SGD算法的训练效率和泛化能力仍有待提高。本文将探讨SGD算法的优化特性及其在深度学习中的应用。 引言 1.1

    2024年02月09日
    浏览(38)
  • 大数据深度学习长短时记忆网络(LSTM):从理论到PyTorch实战演示

    本文深入探讨了长短时记忆网络(LSTM)的核心概念、结构与数学原理,对LSTM与GRU的差异进行了对比,并通过逻辑分析阐述了LSTM的工作原理。文章还详细演示了如何使用PyTorch构建和训练LSTM模型,并突出了LSTM在实际应用中的优势。 人工神经网络(ANN)的设计灵感来源于人类大

    2024年01月25日
    浏览(47)
  • 深度学习5:长短期记忆网络 – Long short-term memory | LSTM

    目录 什么是 LSTM? LSTM的核心思路 长短期记忆网络——通常被称为 LSTM,是一种特殊的RNN,能够学习长期依赖性。由 Hochreiter 和 Schmidhuber(1997)提出的,并且在接下来的工作中被许多人改进和推广。LSTM 在各种各样的问题上表现非常出色,现在被广泛使用。 LSTM 被明确设计用

    2024年02月11日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包