LLaMA-META发布单卡就能跑的大模型

这篇具有很好参考价值的文章主要介绍了LLaMA-META发布单卡就能跑的大模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

2023年2月25日,Meta使用2048张A100 GPU,花费21天训练的Transformer大模型LLaMA开源了。

1.4T tokenstakes approximately 21 days

以下是觉得论文中重要的一些要点

1)相对较小的模型也可以获得不错的性能

研究者发现在给定计算能力限制的情况下,最好的性能并不是来源于更大的模型,而是来源于相对较小模型在更多的数据上进行训练。LLaMA就采用了这种策略,LLaMA模型,模型参数从7B到65B不等,13B版本性能优于GPT-3(175B),65B版本获得相比目前最好模型差不多的性能。目前大家公认的大模型openai的GPT3系列,参数量大约175B。LLaMA相比GPT-3,在获得接近性能的前提下,将参数量降低了一个数量级,模型可在当前单卡GPU上部署。

2)不一定要专业语料,精细处理的开源语料也可以

LLaMA使用CommonCrawl、C4、Wikipedia、Books等语料,并且引入了Github、XrXiv、StackExchange等开源专业语料,模型也具备了不错的写代码、处理数据公式和推理的能力。

LLaMA-META发布单卡就能跑的大模型

 3)各种稳定模型训练的优化技术必不可少

LLaMA基于Transformer模型架构,并且应用了各种优化技术以加速和稳定模型的训练过程。

参考GPT3的训练经验,使用RMSNorm标准化每个transformer block输入,标准化输入能提高训练的稳定性。

参考PaLM经验,使用SwiGLU激活函数替代ReLU激活函数。

参考GPTNeo,使用RoPE位置编码替代原来的绝对位置编码。

同时LLaMA引入causal multi-head attention以减少计算和存储开销,重写了transformer的backward以减少冗余计算,同时考虑GPU的计算和通信的重叠加速训练。

LLaMA使用AdamW优化器,并采用warmup技巧。其实我觉得AdaMax可能会更好些,AdaMax在Speech上相比AdamW更稳定,当然Speech数据和文本数据还是有较大差别的。

4)LLaMA的模型的结果还是可以的

LLaMA在多个指标上同样获得了不错的性能,获得和GPT3差不多的性能。

类似于GPT-3,LLaMA也能没经过调优直接应用到下游任务,具体为zero-shot task和few-shot task。

zero-shot不给参考例子,在给定q时直接让模型生成回答a。few-shot则类似于给出参考例子,给出1、5或64个qa对作为参考,然后在给定同类型的q让模型生成回答a。以下是一个one-shot的例子。

LLaMA-META发布单卡就能跑的大模型

 在zero-shot和few-shot类任务中LLaMA获得不错的性能,并不比更大的模型差(分数越高越好)。

 LLaMA-META发布单卡就能跑的大模型

同当前大模型GPT-3,Gopher、Chinchilla、PaLM相比,LLaMA在多个指标上获得明显的性能提升,并且LLaMA在数学推理任务上获得更好的性能,数学推理据说在chatGPT上栽了跟头。

虽然LLaMA在保证回答正确、没有偏见和对人类有用上花费了很多优化,但正如论文所说,由于预训练语料中的一些偏见,模型可能会产生一些匪夷所思的答案。模型要真正服务人类,可能还是需要使用RLHF,使用人类反馈指导模型对问题回答的选择。

---

[1] LLaMA. llama/MODEL_CARD.md at main · facebookresearch/llama · GitHub

[2] LLaMA: Open and Efficient Foundation Language Models. https://scontent-xsp1-1.xx.fbcdn.net/v/t39.8562-6/333078981_693988129081760_4712707815225756708_n.pdf?_nc_cat=108&ccb=1-7&_nc_sid=ad8a9d&_nc_ohc=ov6yTHfLfNQAX_ixTyd&_nc_ht=scontent-xsp1-1.xx&oh=00_AfDnH5IYrqTcFoOpLmrskeR_kQUe4To1BWUk-ZLv5unymg&oe=6401C9E2

[3] Illustrating Reinforcement Learning from Human Feedback (RLHF). Illustrating Reinforcement Learning from Human Feedback (RLHF)文章来源地址https://www.toymoban.com/news/detail-404757.html

到了这里,关于LLaMA-META发布单卡就能跑的大模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [AI Meta Llama-3] 最强开源大模型Llama 3发布!

    最强开源大模型Llama 3发布!我们看下重点: 今天,我们介绍Meta Llama 3,这是我们最先进的开源大型语言模型的下一代。 Llama 3模型很快将在AWS、Databricks、Google Cloud、Hugging Face、Kaggle、IBM WatsonX、Microsoft Azure、NVIDIA NIM和Snowflake上提供,并得到AMD、AWS、戴尔、英特尔、NVIDIA和高

    2024年04月23日
    浏览(48)
  • Meta 最新发布 LLaMA 2(允许商业化)

    2023年7月18日,Meta 发布了Llama 2,包含7B,13B,70B三种参数(34B暂时还未发布)。 官方: https://ai.meta.com/llama/ 论文:Llama 2: Open Foundation and Fine-Tuned Chat Models 模型:https://huggingface.co/meta-llama github:https://github.com/facebookresearch/llama Llama 2相比Llama最大亮点之一是允许商业化,但需要

    2024年02月16日
    浏览(54)
  • AI大战,Meta发布大型语言模型LLaMA

    ChatGPT引爆了AI行业,全球的科技巨头都先后加入这场AI大战,作为行业大佬的Meta也不例外,宣布推出大型语言模型LLaMA,加入到了这场由微软、谷歌等科技巨头主导的AI“厮杀”中。 LLaMA 模型由 Meta 的FAIR 团队开发,旨在帮助研究人员和工程师探索人工智能应用和相关功能,在

    2024年02月13日
    浏览(53)
  • 免费商用 Meta 发布开源大语言模型 Llama 2

    Meta 和微软深度合作,正式推出下一代开源大语言模型  Llama 2 ,并宣布免费提供给研究和商业使用。   Llama 2 论文地址:Llama 2: Open Foundation and Fine-Tuned Chat Models 据介绍,相比于 Llama 1, Llama 2 的训练数据多了 40%,上下文长度是 Llama 1 的 2 倍 ,并采用了分组查询注意力机制。

    2024年02月15日
    浏览(43)
  • Meta发布升级大模型LLaMA 2:开源可商用

    论文地址 :https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/  Github 地址 :https://github.com/facebookresearch/llama LLaMA 2介绍       Meta之前发布自了半开源的大模型LLaMA,自从LLaMA发布以来,基于它的扩展模型就层出不穷,尤其是羊驼系列,我最近正在总结这

    2024年02月16日
    浏览(35)
  • 一周AIGC丨Meta 发布新一代开源大模型 Llama 2,大模型裁员潮不远了?

    人们把Meta发布免费可商用版本 Llama 2比作“安卓时刻”,OpenAI护城河似乎一下子荡然无存,整个大模型市场格局面临巨变。据媒体报道,在以往,中国大模型公司可以靠商业授权赚钱利润,随着Llama 2开始允许商用,中国大模型公司的这一优势现在也没有了。傅盛更是发出预警

    2024年02月11日
    浏览(46)
  • 基于LLaMA Factory,单卡3小时训练专属大模型 Agent

    大家好,今天给大家带来一篇 Agent 微调实战文章 Agent (智能体)是当今 LLM(大模型)应用的热门话题 [1],通过任务分解(task planning)、工具调用(tool using)和多智能体协作(multi-agent cooperation)等途径,LLM Agent 有望突破传统语言模型能力界限,体现出更强的智能水平。

    2024年01月25日
    浏览(53)
  • 简单有趣的轻量级网络 Efficientnet(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区(网络结构详解+详细注释代码+核心思想讲解)——pytorch实现

            这期博客我们来学习一下Efficientnet网络,属于NAS系列中最优秀的轻量级网络之一,通过NAS搜索的方式确定最佳的网络结构。之前的神经网络的宽度深度,输入图像的分辨率,是怎么获得的呢,说白了就是经验,研究人员通过无数的设计经验获得的,但是网络的发展不

    2024年04月26日
    浏览(44)
  • 中文大语言模型 Llama-2 7B(或13B) 本地化部署 (国内云服务器、GPU单卡16GB、中文模型、WEB页面TextUI、简单入门)

            本文目的是让大家先熟悉模型的部署,简单入门;所以只需要很小的算力,单台服务器 单GPU显卡(显存不低于12GB),操作系统需要安装 Ubuntu 18.04。         准备一台服务器 单张英伟达GPU显卡(显存不低于12GB),操作系统需要安装 Ubuntu 18.04 (具体安装过程忽略)

    2024年02月08日
    浏览(48)
  • Meta Llama 3 简介

    本文翻译自:https://ai.meta.com/blog/meta-llama-3/ 今天,我们将介绍 Meta Llama 3,它是我们最先进的开源大型语言模型的下一代。 Llama 3 模型即将在 AWS、Databricks、Google Cloud、Hugging Face、Kaggle、IBM WatsonX、Microsoft Azure、NVIDIA NIM 和 Snowflake 上推出,并得到 AMD、AWS、Dell、Intel、NVIDIA 和高

    2024年04月24日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包