SIFT四部曲之一:高斯滤波

这篇具有很好参考价值的文章主要介绍了SIFT四部曲之一:高斯滤波。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一.高斯滤波器

高斯滤波器:使用正态分布计算的一种卷积模板,利用高斯滤波器和图像进行卷积运算,可对图像进行模糊处理。公式如下(二维高斯滤波器):

G ( x , y ) = 1 2 π σ 2 e − ( x − m / 2 ) 2 + ( y − n / 2 ) 2 2 σ 2 \mathrm{G}(x, y)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{(x-m / 2)^{2}+(y-n / 2)^{2}}{2 \sigma^{2}}} G(x,y)=2πσ21e2σ2(xm/2)2+(yn/2)2

利用python绘制高斯滤波器,代码如下:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

x = np.linspace(-3, 3, 1000)
y = np.linspace(-3, 3, 1000)
x, y = np.meshgrid(x, y)
w0 = 1
gaussian = np.exp(-((pow(x, 2) + pow(y, 2)) / pow(w0, 2)))

# 二维面振幅分布图
plt.figure()
plt.imshow(gaussian)

# 三维曲面振幅分布图
fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(x, y, gaussian, cmap='jet')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()

绘制的二维高斯曲面如下:

SIFT四部曲之一:高斯滤波
SIFT四部曲之一:高斯滤波

当然上面只是一个连续的曲面,在对图像进行高斯模糊的过程中需要的是高斯模板,这个模板和图像卷积便可得到高斯模糊图像。

二.高斯金字塔

高斯金字塔主要是为了得到不同尺度的图片,这些图片的尺度必须是连续的,所以要对图片进行高斯滤波。高斯金字塔是一个原始图像,产生几组(octave)每一组中又包含着几层(interval)。结构如下:
SIFT四部曲之一:高斯滤波

高斯金字塔的构建主要包括以下4个过程:

  • 1.金字塔的阶数(O)的确定
  • 2.每一组层数(S)的确定
  • 3.每一层的尺度(N)的确定
  • 4.下一组的图片降采样母本的确定
  1. 金字塔的阶数(O):一般为4,也可以根据图像的大小来选择,但需要满足下列关系:

    ∣ O = [ log ⁡ 2 ( min ⁡ ( M , N ) ) ] − 3 \mid \mathrm{O}=\left[\log _{2}(\min (M, N))\right]-3 O=[log2(min(M,N))]3

    其中M,N为图像的行数和列数。

  2. 每一阶的层数(S):一般选择5或者6,一般选择6的时候效果最好。在这边就要根据前面的说明,特征点的选举是要在相邻的两层差分金字塔上面进行检测的,所以要得到N个尺度的特征点,就要在层的差分金字塔上检测,(自己画个图就ok了),然而要产生N+2层的差分金字塔,就要有N+3层的高斯金字塔,这样相邻的相减,才能产生N+2层差分。注意:这里的检测都是同阶里面不同层的操作。所以S = N + 3。记住这个N,有用!

  3. 尺度因子N的选择文章来源地址https://www.toymoban.com/news/detail-404884.html

到了这里,关于SIFT四部曲之一:高斯滤波的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • opencv011 滤波器03 高斯滤波

    今天来学习一下高斯滤波!高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。  高斯函数是符合高斯

    2024年01月24日
    浏览(40)
  • 高斯滤波器

    最近读论文和看源码过程中经常看到高斯滤波器这个概念,论文中说的是利用高斯滤波器来进行去噪、使得特征变得光滑啥的,就不免有一个疑问,为啥高斯滤波器这么牛?同时高斯滤波器也可以看作一种特殊的卷积,那么研究一下高斯滤波器也将有助于我们理解CNN。 图像噪

    2024年02月08日
    浏览(48)
  • python实现陷波滤波器、低通滤波器、高斯滤波器、巴特沃斯滤波器

    在一幅图像中,其低频成分对应者图像变化缓慢的部分,对应着图像大致的相貌和轮廓,而其高频成分则对应着图像变化剧烈的部分,对应着图像的细节(图像的噪声也属于高频成分)。 低频滤波器,顾名思义,就是过滤掉或者大幅度衰减图像的高频成分,让图像的低频成分

    2024年02月11日
    浏览(45)
  • 【图像处理:频率域平滑与锐化】理想滤波器,巴特沃思滤波器,高斯滤波器

    本文主要介绍频率域滤波器,此处的频率域是基于傅立叶变换得出。 在一幅图像中, 低频对应图像变化缓慢的部分 ,即图像大致外观和轮廓。 高频部分对应图像变化剧烈的部分即图像细节 。低通滤波器的功能是让低频率通过而滤掉或衰减高频,其作用是过滤掉包含在高频

    2024年02月04日
    浏览(54)
  • 高斯滤波器讲解(python实现)

    比均值滤波处理图像更加的平滑,边界保留效果更加好; 高斯滤波是一种线性滤波器,能够有效的抑制噪声,平滑图像。其作用原理和均值滤波器类似,都是取滤波器窗口内的像素的均值作为输出。但其窗口模板的系数和均值滤波器不同,均值滤波器的模板系数都是相同的为

    2024年02月03日
    浏览(44)
  • 用python实现高斯滤波器

    高斯滤波器是一种线性滤波器,能够有效的抑制噪声,平滑图像。其作用原理和均值滤波器类似,都是取滤波器窗口内的像素的均值作为输出。其窗口模板的系数和均值滤波器不同,均值滤波器的模板系数都是相同的为1;而高斯滤波器的模板系数,则随着距离模板中心的增大

    2024年02月16日
    浏览(51)
  • 《数字图像处理-OpenCV/Python》连载:空间滤波之高斯滤波器

    本书京东 优惠购书链接 https://item.jd.com/14098452.html 本书CSDN 独家连载专栏 https://blog.csdn.net/youcans/category_12418787.html 图像滤波是指在尽可能保留图像细节特征的条件下对目标图像的噪声进行抑制,是常用的图像处理方法。 空间滤波也称空间域滤波,滤波器规定了邻域形状与邻域

    2024年02月02日
    浏览(59)
  • 图像处理之理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器的matlab简单实现

    一、前言 高通滤波器的功能是让高频率通过而滤掉或衰减低频,其作用是 使图像得到锐化处理,突出图像的边界 。经理想高频滤波后的图像把信息丰富的低频去掉了,丢失了许多必要的信息**。一般情况下,高通滤波对噪声没有任何抑制作用**,若简单的使用高通滤波,图像质

    2023年04月25日
    浏览(45)
  • Matlab图像处理- 高斯低通滤波器

      高斯低通滤波器 高斯低通滤波器是一种 更平滑的一种滤波器 ,高斯低通滤波器完全没有振铃现象,且边缘平滑。 示例代码 利用输入图像,构建一个截止频率为30的高斯低通滤波器的透视图如下图所示。 效果图片

    2024年02月09日
    浏览(44)
  • 表面计量封闭型高斯滤波器(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 ISO 1661

    2024年02月10日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包