Windows安装tensorflow-gpu(1050Ti,cuda11.6,cuDNN7.6.5,python3.6,tensorflow-gpu2.3.0)

这篇具有很好参考价值的文章主要介绍了Windows安装tensorflow-gpu(1050Ti,cuda11.6,cuDNN7.6.5,python3.6,tensorflow-gpu2.3.0)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

参考:https://blog.csdn.net/qq_43215538/article/details/123852028

安装cuda

首先查看本机GPU对应的cuda版本,如下图所示,本机cuda版本为11.6,后面选择的cuda版本不要超过这里的版本就好。
Windows安装tensorflow-gpu(1050Ti,cuda11.6,cuDNN7.6.5,python3.6,tensorflow-gpu2.3.0)
https://developer.nvidia.com/cuda-toolkit-archive选择相应的cudatoolkit版本下载,如这里选择版本一定要注意,因为cuda版本会决定你下载的cudnn和tensorflow-gpu版本,若不一致,会出现版本不匹配等问题,无法使用。我这里选择10.1。
Windows安装tensorflow-gpu(1050Ti,cuda11.6,cuDNN7.6.5,python3.6,tensorflow-gpu2.3.0)
这里选择的版本影响tensorflow-gpu和cudnn的版本,需要对应,对应关系这里看:https://tensorflow.google.cn/install/source_windows
Windows安装tensorflow-gpu(1050Ti,cuda11.6,cuDNN7.6.5,python3.6,tensorflow-gpu2.3.0)
下载完cuda安装包之后,双击安装即可。安装完成之后,环境变量应该会自动添加。
Windows安装tensorflow-gpu(1050Ti,cuda11.6,cuDNN7.6.5,python3.6,tensorflow-gpu2.3.0)
Windows安装tensorflow-gpu(1050Ti,cuda11.6,cuDNN7.6.5,python3.6,tensorflow-gpu2.3.0)
Windows安装tensorflow-gpu(1050Ti,cuda11.6,cuDNN7.6.5,python3.6,tensorflow-gpu2.3.0)

下载cuDNN

下载网址:https://developer.nvidia.com/rdp/cudnn-archive,第一次单击下载时,会让你先注册登录,然后再进行下载,注册过程认真填写内容就没问题,此处略过,接下来进入下载环节。

根据上面的版本对应关系,这里下载7.6.5版本。
Windows安装tensorflow-gpu(1050Ti,cuda11.6,cuDNN7.6.5,python3.6,tensorflow-gpu2.3.0)
下载完成后,解压此文件,将cudnn文件中对应的文件移动到cuda对应的安装目录中。 就是下表,左边的文件移到右边的目录里面。

解压的cudnn文件 安装的cuda目录
bin\cudnn64_7.dll C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin
include\cudnn.h C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include
lib\x64\cudnn.lib C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\lib\x64

安装tensorflow-gpu

创建python3.6虚拟环境

conda create -n tf python=3.6

激活环境

conda activate tf

然后可以用conda也可以用pip安装tensorflow-gpu对应的版本,我这里选择2.3.0, 这里使用pip豆瓣源安装,很快。

pip install tensorflow-gpu==2.3.0 -i https://pypi.douban.com/simple

等待安装完成,测试一下:

import tensorflow as tf
tf.autograph.set_verbosity(0)
physical_devices = tf.config.experimental.list_physical_devices('GPU')
print(physical_devices)
config = tf.config.experimental.set_memory_growth(physical_devices[0], True)

Windows安装tensorflow-gpu(1050Ti,cuda11.6,cuDNN7.6.5,python3.6,tensorflow-gpu2.3.0)文章来源地址https://www.toymoban.com/news/detail-404916.html

到了这里,关于Windows安装tensorflow-gpu(1050Ti,cuda11.6,cuDNN7.6.5,python3.6,tensorflow-gpu2.3.0)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Docker【部署 07】镜像内安装tensorflow-gpu及调用GPU多个问题处理Could not find cuda drivers+unable to find libcuda.so...

    Other than the name, the two packages have been identical since TensorFlow 2.1 也就是说安装2.1版本的已经自带GPU支持。 不同型号的GPU及驱动版本有所区别,环境驱动及CUDA版本如下: 在Docker容器中的程序无法识别CUDA环境变量,可以尝试以下步骤来解决这个问题: 检查CUDA版本:首先,需要确认

    2024年02月04日
    浏览(46)
  • tensorflow-gpu卸载 (windows)

    在安装 Tensorflow-gpu 时,如果, Tensorflow-gpu 、 Python 、 cuda 、 cuDNN 版本关系不匹配很容易安装出错,要重新安装的话,要把之前装的卸载干净! tensorflow-cpu卸载, 激活进入虚拟环境,在这里卸载: 进入虚拟环境安装路径: Proceed(y/n)? y 删除之前创建的虚拟环境(例子为删除名

    2024年02月05日
    浏览(59)
  • windows10系统PYthon深度学习环境安装(Anaconda3、PYthon3.10、CUDA11.6、CUDDN10、pytorch、tensorflow,Pycharm)

    一、 總體说明 1、說明:總體採用https://blog.csdn.net/zhizhuxy999/article/details/90442600方法,部分步驟由於版本變化,進行了調整。 2、基本概念 编程语言/编译器:Python。Python的特点是“用最少的代码干最多的事”。Python 2即在2020年停止更新,所以现在学习Python 3是最好的选择。 P

    2023年04月18日
    浏览(84)
  • tensorflow-gpu安装100%成功(tensorflow-gpu版和tensorflow-cpu版的区别、为什么要创建虚拟环境、如何同时使用两个gpu库、tensorflow-gpu版安装)

    1.tensorflow-gpu版和tensorflow-cpu版的区别 tensorflow-gpu版需要同时配置安装CUDA、cuDNN,而tensorflow-cpu版不需要配置,直接 pip/conda install tensorflow 即可安装tensorflow-cpu版本 2.为什么要创建虚拟环境 在安装gpu版本的库时通常会创建单独的虚拟环境,例如安装tensorflow-gpu,则需要利用 cond

    2024年02月08日
    浏览(57)
  • 安装tensorflow-gpu

    打开anaconda prompt,添加镜像源: 删除镜像源使用: 创建虚拟环境并安装tensorflow-gpu: 查看一下包的版本: python是3.6.2版本的 在下面的网站中查找对应版本: 在 Windows 环境中从源代码构建  |  TensorFlow (google.cn) 对应的最低tensorflow-gpu是1.2.0版本的 选择一个合适的2.0.0版本的 但

    2024年02月07日
    浏览(48)
  • 【TensorFlow】P0 Windows GPU 安装 TensorFlow、CUDA Toolkit、cuDNN

    TensorFlow 是一个基于数据流图的深度学习框架 TensorFlow是一个基于数据流图的深度学习框架,它使用张量(Tensor)作为数据的基本单位,在GPU上进行张量运算可以极大地提高深度学习模型的训练和推理速度。而CUDA则提供了在GPU上执行高性能并行计算所需的API和运行时环境,能

    2024年02月13日
    浏览(40)
  • Windows安装GPU环境CUDA、深度学习框架Tensorflow和Pytorch

    Windows安装GPU环境CUDA、深度学习框架Tensorflow和Pytorch 首先需要安装GPU环境,包括cuda和cudnn。 深度学习本质上就是训练深度卷积神经网络。 cuda:显卡能够完成并行计算任务,所有的操作是比较底层的、复杂的。 cudnn:在cuda之上有一个专门用于深度神经网络的SDK库来加速完成相

    2023年04月26日
    浏览(60)
  • win10 安装 tensorflow-gpu 2.10.0

    系统配置 系统 win10 x64 显卡 GTX 1660 Ti CUDA 12.2 cudnn 8.9 查看版本对应: https://tensorflow.google.cn/install/source_windows#gpu Version Python version Compiler Build tools cuDNN CUDA tensorflow_gpu-2.10.0 3.7-3.10 MSVC 2019 Bazel 5.1.1 8.1 11.2 这里查看我 系统配置 我安装 python 3.10 和 tensorflow_gpu-2.10.0 安装 conda 安装

    2024年02月14日
    浏览(47)
  • tensorflow-gpu 2.3.0安装 及 相关对应版本库安装(Anaconda安装)

    目录 如需转载,请标明出处,谢谢。 一、安装tensorflow-gpu2.3.0 二、配置其他相关的库 很多人以为安装完tensorflow-gpu就是一切都结束了,但是殊不知,python中的很多库,比如numpy,matplotlib等库,就与我们的tensorflow的版本有对应 总结 对于anaconda的下载,网上的教程很多,而且很

    2024年02月02日
    浏览(70)
  • Docker【部署 05】docker使用tensorflow-gpu安装及调用GPU踩坑记录

    Other than the name, the two packages have been identical since TensorFlow 2.1 也就是说安装2.1版本的已经自带GPU支持。 不同型号的GPU及驱动版本有所区别,环境驱动及CUDA版本如下: 在Docker容器中的程序无法识别CUDA环境变量,可以尝试以下步骤来解决这个问题: 检查CUDA版本:首先,需要确认

    2024年02月08日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包