稀疏特征和密集特征

这篇具有很好参考价值的文章主要介绍了稀疏特征和密集特征。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在机器学习中,特征是指对象、人或现象的可测量和可量化的属性或特征。特征可以大致分为两类:稀疏特征和密集特征。

稀疏特征和密集特征

稀疏特征

稀疏特征是那些在数据集中不连续出现的特征,并且大多数值为零。稀疏特征的示例包括文本文档中特定单词的存在或不存在或交易数据集中特定项目的出现。之所以称为稀疏特征,是因为它们在数据集中只有很少的非零值,而且大多数值都是零。

稀疏特征在自然语言处理 (NLP) 和推荐系统中很常见,其中数据通常表示为稀疏矩阵。使用稀疏特征可能更具挑战性,因为它们通常具有许多零或接近零的值,这会使它们在计算上变得昂贵并且会减慢训练过程。稀疏特征在特征空间很大并且大多数特征不相关或冗余的情况是有效的。在这些情况下稀疏特征有助于降低数据的维度,从而实现更快、更高效的训练和推理。

密集特征

密集特征是那些在数据集中经常或有规律地出现的特征,并且大多数值都是非零的。密集特征的示例包括人口统计数据集中个人的年龄、性别和收入。之所以称为密集特征,是因为它们在数据集中有许多非零值。

密集特征在图像和语音识别中很常见,其中数据通常表示为密集向量。密集特征通常更容易处理,因为它们具有更高密度的非零值,并且大多数机器学习算法都设计为处理密集特征向量。密集特征可能更适用于特征空间相对较小的情况,并且每个特征对于手头的任务都很重要。

区别

稀疏特征和密集特征之间的区别在于它们的值在数据集中的分布。稀疏特征具有很少的非零值,而密集特征具有许多非零值,这种分布差异对机器学习算法有影响,因为与密集特征相比,算法在稀疏特征上的表现可能不同。

算法选择

现在我们知道了给定数据集的特征类型,如果数据集包含稀疏特征或数据集包含密集特征,我们应该使用哪种算法?

一些算法更适合稀疏数据,而另一些算法更适合密集数据。

  • 对于稀疏数据,流行的算法包括逻辑回归、支持向量机 (SVM) 和决策树。
  • 对于密集数据,流行的算法包括神经网络,例如前馈网络和卷积神经网络。

但需要注意的是,算法的选择不仅仅取决于数据的稀疏性或密度,还应考虑数据集的大小、特征类型、问题的复杂性等其他因素 ,一定要尝试不同的算法并比较它们在给定问题上的性能。

https://avoid.overfit.cn/post/db548d55a7f44ec791bbc024727673e8

作者:Induraj文章来源地址https://www.toymoban.com/news/detail-405085.html

到了这里,关于稀疏特征和密集特征的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C#学习笔记--面向对象三大特征

    用程序来抽象现实世界,(万物皆对象)来编程实现功能。 三大特性:封装、继承、多态。 类与对象 声明位置: namespace 中 样式: class 类名{} 命名:帕斯卡命名法(首字母大写) 实例化对象:根据类来新建一个对象。 Person p=new Person(); 成员变量 声明在类语句块中 用来描述

    2024年02月08日
    浏览(52)
  • python机器学习——机器学习相关概念 & 特征工程

    监督学习:输入数据有特征有标签,即有标准答案 分类:k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络 回归:线性回归、岭回归 标注:隐马尔可夫模型 (不做要求) 无监督学习:输入数据有特征无标签,即无标准答案 聚类:k-means 特征工程是将原始数据

    2024年02月11日
    浏览(50)
  • Python学习之路-面向对象:三个基本特征

    封装:根据职责将属性和方法封装到一个抽象的类中 继承:实现代码的重用,相同的代码不需要重复的编写 多态:不同的对象调用相同的方法,产生不同的执行结果,增加代码的灵活度 封装是面向对象编程的一大特点,面向对象编程的第一步就是将属性和方法封装到一个抽

    2024年02月02日
    浏览(58)
  • 【机器学习】特征工程 - 文本特征提取TfidfVectorizer

    「作者主页」: 士别三日wyx 「作者简介」: CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」: 对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 对 「文本」 进行特征提取时,一般会用 「单词」 作为特征,即特征词。

    2024年02月12日
    浏览(39)
  • 机器学习重要内容:特征工程之特征抽取

    目录 1、简介 2、⭐为什么需要特征工程 3、特征抽取 3.1、简介 3.2、特征提取主要内容 3.3、字典特征提取 3.4、\\\"one-hot\\\"编码 3.5、文本特征提取 3.5.1、英文文本 3.5.2、结巴分词 3.5.3、中文文本 3.5.4、Tf-idf ⭐所属专栏:人工智能 文中提到的代码如有需要可以私信我发给你噢😊 特

    2024年02月12日
    浏览(41)
  • 机器学习:特征工程之特征预处理

    目录 特征预处理 1、简述 2、内容 3、归一化 3.1、鲁棒性 3.2、存在的问题 4、标准化 ⭐所属专栏:人工智能 文中提到的代码如有需要可以私信我发给你😊 什么是特征预处理:scikit-learn的解释: provides several common utility functions and transformer classes to change raw feature vectors into a r

    2024年02月12日
    浏览(54)
  • 机器学习基础之《特征工程(2)—特征工程介绍、特征抽取》

    一、什么是特征工程 机器学习领域的大神Andrew Ng(吴恩达)老师说“Coming up with features is difficult, time-consuming, requires expert knowledge. “Applied machine learning” is basically feature engineering. ” 注:业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已

    2024年02月13日
    浏览(37)
  • 机器学习基础之《特征工程(4)—特征降维》

    一、什么是特征降维 降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程 1、降维 降低维度 ndarry     维数:嵌套的层数     0维:标量,具体的数0 1 2 3...     1维:向量     2维:矩阵     3维:多个二维数组嵌套     n维:继续嵌套

    2024年02月13日
    浏览(41)
  • 机器学习特征工程学习笔记(一)

            机器学习特征工程是指在机器学习任务中对原始数据进行转换、提取和选择,以创建更有效、更具有表征能力的特征的过程。良好的特征工程可以显著提升模型的性能,并帮助解决数据中存在的各种问题。         以下是一些常见的机器学习特征工程技术:

    2024年02月11日
    浏览(45)
  • 机器学习基础之《特征工程(3)—特征预处理》

    一、什么是特征预处理 通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程 处理前,特征值是数值,处理后,进行了特征缩放 1、包含内容 数值型数据的无量纲化: 归一化 标准化 2、特征预处理API sklearn.preprocessing 3、为什么我们要进行归一化/标准化 特征

    2024年02月14日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包