【自动驾驶】感知融合中的匹配算法

这篇具有很好参考价值的文章主要介绍了【自动驾驶】感知融合中的匹配算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.概念

        匹配算法,就是说当前帧的感知上游输入过来的量测值如何与前一帧的track匹配起来。首先我们需要计算track与量测值之间的距离,然后通过一定的分配算法来找到每个track的最佳匹配。

【自动驾驶】感知融合中的匹配算法

2.距离度量

        距离度量是衡量两个目标相近的一种方式,有可能是2D的图像特征度量,用得更多的是IoU、欧式距离等通过计算3D、2D目标的位置距离度量方式。

IoU:一般用在2D\3D的距离计算中。可能会计算较慢。

欧式距离:一般用在不规则多边形,或者感知输出不稳定或会经常性出现遮挡等情况下。

余弦距离:特征距离计算的一种方法,一般用于图像域。需要比较大的数据集泛化能力。

3.分配算法

        我们比较熟知的deep-sort中,用到的就是匈牙利算法。这个算法就是一种分配算法,除此之外还有贪心算法等。

匈牙利算法:通过矩阵运算,在多项式时间内求解任务分配问题的组合优化算法。该算法能较好的解决分配问题。能够尽可能的为每个track都找到一个最优解。

贪心算法:在对问题求解时,总是做出在当前看来是最好的选择。再每轮迭代中都要找到该track的最佳匹配(每次都剔除被某个track绑定的量测值)。在单个传感器的跟踪的时候比较好用。

4.举个例子

(1)距离度量

下面的算法就是目标检测中也常用的IoU计算,我们会计算目标框(track)与候选框&#文章来源地址https://www.toymoban.com/news/detail-405095.html

到了这里,关于【自动驾驶】感知融合中的匹配算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 自动驾驶环境感知之激光雷达物体检测算法

    前言 :视觉感知包括二维和三维视觉感知,其最终目的是为了获取三维世界坐标系下感兴趣的目标和场景的信息。单目相机下,需要几何约束或者海量数据来学习,以此来推测三维信息。双目相机下,可基于立体视觉原理来计算目标的深度信息,但在光照条件比较差或者纹理

    2024年01月23日
    浏览(54)
  • 自动驾驶感知——物体检测与跟踪算法|4D毫米波雷达

    DBSCAN: Density Based Spatial Clustering of Applications with Noise; DBSCAN是基于密度的聚类方法,对样本分布的适应能力比K-Means更好。 红色的点是核心对象 黑色的点是非核心对象 注意 :距离的度量不限于点的空间距离,还可以是其它点特征,比如速度、反射强度等 基本思路 假定类别可以

    2024年02月11日
    浏览(44)
  • 论文阅读综述:自动驾驶感知的多模态传感器融合Multi-modal Sensor Fusion for Auto Driving Perception: A Survey

    题目 :Multi-modal Sensor Fusion for Auto Driving Perception: A Survey 用于自动驾驶感知的多模态传感器融合:综述 链接 :https://arxiv.org/abs/2202.02703 只翻译了个人认为比较重要的东西,有些官方话就省了。这篇文章通俗易懂,不过综述都是标记文献[xx]干了啥,其实咱也不知道他具体是咋

    2023年04月08日
    浏览(55)
  • 纯视觉都有哪些量产方案?单目3D感知在自动驾驶中的应用一览(3D检测/BEV/占用网络)

    尽管基于点云的3D目标检测算法性能不断提升,在KITTI和Nuscenes等榜单上碾压视觉方案。但是激光雷达相对高昂的造价和对各种复杂天气情况的敏感性限制激光雷达的应用范围,使得研究人员更多的探索基于视觉的3D检测。 纯视觉的3D检测输入一般是单目图像或多目图像,只需

    2024年03月19日
    浏览(59)
  • 自动驾驶定位算法:基于多传感器融合的状态估计(muti-Sensors Fusion)

    1、传感器(Sensor)选取 自动驾驶系统中用于状态估计(State Estimation)的常用传感器包括GPS/GNSS、IMU、激光雷达(Lidar)。 状态估计(State Estimation)选用传感器需要考虑哪些因素: 1)误差不相关性。也就是说,用于Sensor Fusion的传感器其中单个传感器(Sensor Measurement)测量失败,不会导

    2024年04月13日
    浏览(46)
  • 自动驾驶汽车关键技术_感知

    两套标准 分别由美国交通部下属的国家高速路安全管理局(NationalHighwayTraffic Safety Administration ,NHSTA) 和国际汽车工程师协会(Societyof Automotive Engineers,SAE) 制定的。 自动驾驶是一个由激光雷达(LiDAR) 、毫米波雷达(RADAR) 、摄像机(Camera ) 、全球定位系统(GPS 

    2024年04月10日
    浏览(85)
  • 自动驾驶感知系统--惯性导航定位系统

    惯性是所有质量体本身的基本属性,所以建立在牛顿定律基础上的惯性导航系统(Inertial Navigation System,INS)(简称惯导系统)不与外界发生任何光电联系,仅靠系统本身就能对车辆进行连续的三维定位和三维定向。卫星导航作为定位方式又更新频率低的问题,只有10Hz左右,无法

    2024年02月15日
    浏览(42)
  • 自动驾驶感知系统-超声波雷达

    超声波雷达,是通过发射并接收40kHz的超声波,根据时间差算出障碍物距离。其测距精度是1~3cm.常见的超声波雷达有两种:第一种是安装在汽车前后保险杠上的,用于测量汽车前后障碍物的驻车雷达或倒车雷达,称为超声波驻车辅助传感器(Ultrasonic Parking Assistant, UPA);第二种

    2024年02月16日
    浏览(38)
  • 自动驾驶感知传感器标定安装说明

    1. 概述 本标定程序为整合现开发的高速车所有标定模块,可实现相机内参标定和激光、相机、前向毫米波 至车辆后轴中心标定,标定参数串联传递并提供可视化工具验证各个模块标定精度。整体标定流程如下,标定顺序为下图前标0--1--2--3,相同编号标定顺序没有强制要求,

    2024年02月11日
    浏览(50)
  • 【Apollo】自动驾驶感知——毫米波雷达

    作者简介: 辭七七,目前大一,正在学习C/C++,Java,Python等 作者主页: 七七的个人主页 文章收录专栏: 七七的闲谈 欢迎大家点赞 👍 收藏 ⭐ 加关注哦!💖💖 本文用于投稿于星火培训:报名链接 毫米波雷达分类毫米波雷达的信号频段毫米波雷达工作原理车载毫米波雷达

    2024年02月12日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包