实验1.1 合并有序数组
//001合并有序数组
#include <bits/stdc++.h>
#define MAXSIZE 20 //数组的最大长度为20
typedef struct //定义线性表的顺序存储结构
{
int elem[MAXSIZE];
int last = -1;
} SeqList;
void inputList(SeqList *la, SeqList *lb) //输入两个线性表
{
int n, m;
scanf("%d", &n);
for (int i = 0; i < n; i++)
{
scanf("%d", &la->elem[i]);
la->last++;
}
scanf("%d", &m);
for (int i = 0; i < m; i++)
{
scanf("%d", &lb->elem[i]);
lb->last++;
}
}
void mergeList(SeqList *la, SeqList *lb, SeqList *lc) //合并数组
{
int ia, ib, ic; //三个数分别指向三个线性表中正在进行数据处理的位置
ia = 0;
ib = 0;
ic = 0; //从头开始处理
while (ia <= la->last && ib <= lb->last) //两个数组都没有处理完数据时
{
if (la->elem[ia] <= lb->elem[ib]) //比较当前的两个数,将较小数放入lc中
{
lc->elem[ic] = la->elem[ia];
ia++;
ic++;
}
else
{
lc->elem[ic] = lb->elem[ib];
ib++;
ic++;
}
}
while (ia <= la->last) //当有一个或两个数组完成了对所有数据的处理,则将没有完成数据处理的数组中剩余的元素依次放入lc中
{
lc->elem[ic] = la->elem[ia];
ia++;
ic++;
}
while (ib <= lb->last)
{
lc->elem[ic] = lb->elem[ib];
ib++;
ic++;
}
lc->last = la->last + lb->last + 1;
}
void printList(int length, SeqList *L) //打印线性表
{
for (int i = 0; i < length; i++)
printf("%d\n", L->elem[i]);
}
int main()
{
SeqList la, lb, lc;
inputList(&la, &lb);
mergeList(&la, &lb, &lc);
printList(la.last + lb.last + 2, &lc);
return 0;
}
实验1.2 高精度计算PI值
//002高精度计算PI值
#include <bits/stdc++.h>
typedef struct list //定义双向链表
{
int data;
struct list *next;
struct list *prior;
} list;
list *Initlist() //初始化双向链表
{
list *head;
head = (list *)malloc(sizeof(list));
head->next = head->prior = head;
return head;
}
list *Creatlist(list *head) //建立链表
{
int i;
list *p;
p = head;
for (i = 0; i < 1000; i++)
{
list *q = (list *)malloc(sizeof(list));
q->data = 0;
q->prior = p;
p->next = q;
q->next = head; //第一次循环时此时的head和p是一个东西,目的为把链表画成一个圈
head->prior = q;
p = p->next;
}
return head;
}
int main()
{
int n, i, a, b;
scanf("%d", &n);
list *number, *sum;
list *p, *q, *x;
number = Initlist();
sum = Initlist();
number = Creatlist(number);
sum = Creatlist(sum);
number->next->data = 2; //第一位储存2,即2*R(1)=2
sum->next->data = 2; //与上同理
a = 0, b = 0; //分别是用来暂时存储进位和余数
for (i = 1; i < 2500; i++) //循环两千次,确保精确度
{
p = number->prior; //做大数乘法时从链表的后方开始
while (p != number) //大于10则把10位的数字给b,个位数字放入data域中。
{
a = p->data * i + b;
p->data = a % 10;
b = a / 10;
p = p->prior;
}
b = 0; //清空b,为除法做准备
p = p->next; //大数除法从链表的前方开始
while (p != number) //若计算出的数字为自然数,则直接放入data域;若等于0,或为小数,则要计算余数并给b。
{
a = p->data + b * 10;
p->data = a / (2 * i + 1);
b = a % (2 * i + 1);
p = p->next;
}
b = 0; //清零
p = number->prior; //大数加法均从末尾开始
q = sum->prior;
while (p != number) //大于10进位,并储存个位数,进位数字赋给b。
{
a = p->data + q->data + b;
q->data = a % 10;
b = a / 10;
p = p->prior;
q = q->prior;
}
}
printf("3.");
x = sum->next->next; //从小数开始输出。
for (i = 0; i < n; i++)
{
printf("%d", x->data);
x = x->next;
}
return 0;
}
实验2.1 稀疏矩阵转置
//003稀疏矩阵转置:一次定位快速转置法
#include <bits/stdc++.h>
#define MAXSIZE 2000
typedef struct triple
{ //定义三元组
int r, c, e; //三元组的坐标和元素值
} triple;
typedef struct matrix
{ //定义稀疏矩阵
int m, n, t; //稀疏矩阵的行列数和非零元素个数
triple data[MAXSIZE]; //该稀疏矩阵中的三元组信息 从下标1开始
} matrix;
void initMatrixA(matrix *M) //初始化矩阵A
{
scanf("%d%d", &M->m, &M->n); //输入矩阵信息
M->t = 0;
int temp_r, temp_c, temp_e;
while (true) //输入三元组信息
{
scanf("%d", &temp_r);
getchar();
scanf("%d", &temp_c);
getchar();
scanf("%d", &temp_e);
getchar();
if (temp_r == 0 && temp_c == 0 && temp_e == 0)
{
break;
}
M->t++;
M->data[M->t].r = temp_r;
M->data[M->t].c = temp_c;
M->data[M->t].e = temp_e;
}
}
void initMatrixB(matrix *M, int m, int n, int t) //初始化B矩阵
{
M->m = n;
M->n = m;
M->t = t;
}
void transposeMatrix(matrix A, matrix *B) //转置函数
{
int num[MAXSIZE], pos[MAXSIZE]; //num存储A中每一列非零元素个数,pos记录不同列号对应的开始位置
for (int col = 0; col < A.n; col++)
{
num[col] = 0;
}
for (int t = 1; t <= A.t; t++) //统计每一个列号对应的三元组个数
{
num[A.data[t].c]++;
}
pos[0] = 1;
for (int col = 1; col < A.n; col++) //计算不同列号对应的开始位置
{
pos[col] = pos[col - 1] + num[col - 1];
}
for (int p = 1; p <= A.t; p++) //完成转置
{
int col = A.data[p].c;
int q = pos[col];
B->data[q].r = A.data[p].c;
B->data[q].c = A.data[p].r;
B->data[q].e = A.data[p].e;
pos[col]++;
}
}
void printResult(matrix M) //输出矩阵三元组
{
for (int i = 1; i <= M.t; i++)
{
printf("%d %d %d\n", M.data[i].r, M.data[i].c, M.data[i].e);
}
}
int main()
{
matrix A, B; //定义待转置矩阵A和输出矩阵B
initMatrixA(&A);
initMatrixB(&B, A.m, A.n, A.t);
transposeMatrix(A, &B);
printResult(B);
return 0;
}
实验2.2 稀疏矩阵加法,实现C=A+B
//004 稀疏矩阵加法
#include <bits/stdc++.h>
#define MAXSIZE 20000
using namespace std;
typedef struct triple
{
int x, y; //非零元素的坐标
int e; //非零元素的值
} triple;
typedef struct matrix
{
int row, col, t; //定义矩阵的长宽和非零元素个数
triple data[MAXSIZE]; //存储矩阵的三元组
} matrix;
void inputTriple(matrix *A, matrix *B) //输入矩阵三元组
{
for (int i = 0; i < A->t; i++)
{
scanf("%d%d%d", &A->data[i].x, &A->data[i].y, &A->data[i].e);
}
for (int i = 0; i < B->t; i++)
{
scanf("%d%d%d", &B->data[i].x, &B->data[i].y, &B->data[i].e);
}
}
void addMatrix(matrix *A, matrix *B) //矩阵相加
{
for (int i = 0; i < B->t; i++)
{
for (int j = 0; j < A->t; j++)
{
if (A->data[j].x == B->data[i].x && A->data[j].y == B->data[i].y) //相同位置有非零元素
{
A->data[j].e += B->data[i].e;
B->data[i].x = -1; //标记已经用过的三元组
}
if (A->data[j].e == 0) //排除相加后为0的三元组
{
A->data[j].x = -1;
}
}
}
for (int i = 0; i < B->t; i++) //对于B中没有用过的三元组进行遍历
{
if (B->data[i].x == -1)
continue;
A->data[A->t].x = B->data[i].x;
A->data[A->t].y = B->data[i].y;
A->data[A->t].e = B->data[i].e; //新建A的三元组
A->t++;
}
}
void sortTriple(matrix *A) //对A中三元组按照行递增和行内列递增的顺序进行排列
{
for (int i = 0; i < A->t; i++) //行列递增排序
{
for (int j = 0; j < A->t - i - 1; j++)
{
if (A->data[j].x > A->data[j + 1].x || (A->data[j].x == A->data[j + 1].x && A->data[j].y > A->data[j + 1].y))
{
triple t = A->data[j];
A->data[j] = A->data[j + 1];
A->data[j + 1] = t;
}
}
}
}
void printMatrix(matrix A)
{
for (int i = 0; i < A.t; i++)
{
if (A.data[i].x == -1)
continue;
printf("%d %d %d\n", A.data[i].x, A.data[i].y, A.data[i].e);
}
}
int main()
{
matrix A, B;
scanf("%d%d%d%d", &A.row, &A.col, &A.t, &B.t);
B.row = A.row;
B.col = A.col;
inputTriple(&A, &B);
addMatrix(&A, &B);
sortTriple(&A);
printMatrix(A);
return 0;
}
实验2.3 稀疏矩阵加法,用十字链表实现C=A+B
//005 以十字链表为存储结构实现矩阵相加
#include <bits/stdc++.h>
typedef struct Node
{
int x, y, e;
Node *right, *down;
} Node;
typedef struct Matrix
{
Node **rhead, **chead;
int m, n, t;
} Matrix;
void initMatrix(Matrix *A, Matrix *B)
{
scanf("%d%d%d%d", &A->m, &A->n, &A->t, &B->t);
B->m = A->m;
B->n = A->n;
}
void insertNode(Matrix *L, Node *P) //插入节点
{
Node *temp, *N;
N = (Node *)malloc(sizeof(Node)); //新建待插入节点
N->y = P->y;
N->x = P->x;
N->e = P->e; //装载节点信息
//插入行指针
if (L->rhead[N->x] == NULL || L->rhead[N->x]->y > N->y) //需要插在头结点的情况
{
N->right = L->rhead[N->x];
L->rhead[N->x] = N;
}
else
{
for (temp = L->rhead[N->x]; temp->right && temp->right->y < N->y; temp = temp->right)
; //不断向右遍历找到正确插入位置
N->right = temp->right;
temp->right = N;
}
//插入列指针
if (L->chead[N->y] == NULL || L->chead[N->y]->x > N->x)
{
N->down = L->chead[N->y];
L->chead[N->y] = N;
}
else
{
for (temp = L->chead[N->y]; temp->down && temp->down->x < N->x; temp = temp->down)
;
N->down = temp->down;
temp->down = N;
}
}
void createMatrix(Matrix *M)
{
Node *p, q;
M->rhead = (Node **)malloc((M->m + 1) * sizeof(Node));
M->chead = (Node **)malloc((M->n + 1) * sizeof(Node)); //创建行列指针表
for (int i = 1; i <= M->m; i++) //初始化行列指针
M->rhead[i] = NULL;
for (int i = 1; i <= M->n; i++)
M->chead[i] = NULL;
for (int i = 1; i <= M->t; i++) //开辟节点并装在数据域和插入十字链表
{
p = (Node *)malloc(sizeof(Node));
scanf("%d%d%d", &p->x, &p->y, &p->e);
insertNode(M, p);
}
}
void addMatrix(Matrix *A, Matrix *B)
{
Node *p, *temp1, *temp2;
for (int i = 1; i <= B->m; i++) //枚举每一行的头指针
{
if (B->rhead[i] == NULL) //如果B矩阵的该行没有元素,直接跳过,不需要执行加法
continue;
else
{
if (A->rhead[i] == NULL) //如果B该行不空,但A空,问题转化为将B中节点插入A中
{
temp2 = B->rhead[i];
while (temp2)
{
insertNode(A, temp2);
temp2 = temp2->right;
}
}
else //如果A该行和B该行都不空
{
for (temp2 = B->rhead[i];; temp2 = temp2->right)
{
for (temp1 = A->rhead[i];; temp1 = temp1->right) //对于该行某个B节点,枚举所有A节点
{
if (temp2->y == temp1->y) //如果两个节点位置重合,直接相加
{
temp1->e += temp2->e;
break;
}
//如果位置不重合
else if ((temp2->y < temp1->y) || temp1->right == NULL) //如果temp2的列已经大于temp1的列,说明temp2没有遇到相同列数的temp1
{ //又或者已经遍历到尽头都没有相同列数
insertNode(A, temp2); //说明该列不可能存在相同位置了,直接插入
break;
}
else if (temp2->y > temp1->y && temp2->y < temp1->right->y) //如果temp2正好介于两者之间
{
insertNode(A, temp2);
break;
}
}
if (temp2->right == NULL)
break;
}
}
}
}
}
void printMatrix(Matrix *L)
{
int i;
Node *p;
for (i = 1; i <= L->m; i++)
{
p = L->rhead[i];
while (p != NULL)
{
if (p->e != 0)
printf("%d %d %d\n", p->x, p->y, p->e);
p = p->right;
}
}
}
int main()
{
Matrix A, B;
initMatrix(&A, &B);
createMatrix(&A);
createMatrix(&B);
addMatrix(&A, &B);
printMatrix(&A);
return 0;
}
/*
3 4 3 2
1 1 1
1 3 1
2 2 2
1 2 1
2 2 3
*/
实验2.4 稀疏矩阵的乘法
//006 稀疏矩阵的乘法
#include <bits/stdc++.h>
#define MAXSIZE 2000
typedef struct triple
{ //定义三元组
int r, c, e; //三元组的坐标和元素值
} triple;
typedef struct matrix
{ //定义稀疏矩阵
int m, n, t; //稀疏矩阵的行列数和非零元素个数
triple data[MAXSIZE]; //该稀疏矩阵中的三元组信息 从下标1开始
} matrix;
void initMatrix(matrix *M) //初始化稀疏矩阵
{
scanf("%d", &M->m);
getchar();
scanf("%d", &M->n);
while (true)
{
triple *p = (triple *)malloc(sizeof(triple));
scanf("%d", &p->r);
getchar();
scanf("%d", &p->c);
getchar();
scanf("%d", &p->e);
if (!p->c)
break;
M->t++;
M->data[M->t].r = p->r;
M->data[M->t].c = p->c;
M->data[M->t].e = p->e;
}
}
void multiplyMatrix(matrix A, matrix B, matrix *C)
{
int temp = 0; //temp用于累加当前行列相乘所得到的结果
for (int i = 1; i <= A.m; i++)
{
for (int j = 1; j <= B.n; j++) //外两层循环是分别遍历第一个矩阵的行号和第二个矩阵的列号,排列组合
{
for (int p = 1; p <= A.t; p++)
{
for (int q = 1; q <= B.t; q++) //内两层循环是遍历所有元素,找到能进行乘法的元素数对
{
if (A.data[p].r == i && B.data[q].c == j && A.data[p].c == B.data[q].r)
{
temp += A.data[p].e * B.data[q].e;
}
}
}
if (!temp)
continue;
else
{
C->t++;
C->data[C->t].r = i;
C->data[C->t].c = j;
C->data[C->t].e = temp;
temp = 0;
}
}
}
}
void printMatrix(matrix M) //输出矩阵三元组
{
for (int i = 1; i <= M.t; i++)
{
printf("%d %d %d\n", M.data[i].r, M.data[i].c, M.data[i].e);
}
}
int main()
{
matrix A, B, C;
initMatrix(&A);
initMatrix(&B);
C.m = A.m;
C.n = B.n;
multiplyMatrix(A, B, &C);
printMatrix(C);
return 0;
}
实验3.1 哈夫曼编/译器
//007 哈夫曼编/译码器
#include <bits/stdc++.h>
#define N 100 //叶子结点最大数量
#define M 2 * N - 1 //所有结点最大数量
typedef struct HTNode //结点
{
int weight; //权重
int parent, lchild, rchild; //双亲、左右孩子结点
char data; //字符
} HTNode, HT[M + 1];
HT ht;
typedef struct HCNode
{
int bit[200]; //编码
int start; //该编码的末尾位置
} HCNode, HC[100];
HC hc;
int str[1000] = {0};
int len = 0;
void select(int pos, int *x1, int *x2)
{
int min = 100000;
for (int i = 1; i <= pos; i++)
{
if (ht[i].weight < min && ht[i].parent == 0) //注意判断该节点必须没有双亲节点
{
min = ht[i].weight;
*x1 = i;
}
}
min = 100000;
for (int i = 1; i <= pos; i++)
{
if (i == *x1)
continue;
if (ht[i].weight < min && ht[i].parent == 0) //注意判断该节点必须没有双亲节点
{
min = ht[i].weight;
*x2 = i;
}
}
}
void initTree(int n)
{
int x1, x2;
for (int i = 1; i <= 2 * n - 1; i++) //对所有结点初始化
{
ht[i].weight = 0;
ht[i].parent = 0;
ht[i].lchild = 0;
ht[i].rchild = 0;
}
for (int i = 1; i <= n; i++) //叶子结点的data域
{
getchar();
scanf("%c", &ht[i].data);
}
for (int i = 1; i <= n; i++) //叶子结点的weight域
{
scanf("%d", &ht[i].weight);
}
for (int i = n; i < 2 * n - 1; i++)
{
select(i, &x1, &x2); //找到序号为i的结点之前的两个最小权重结点
//两个最小权重结点组成一棵树,以i处的结点为根节点,直至循环结束所有结点组成一棵树
ht[i + 1].weight = ht[x1].weight + ht[x2].weight;
ht[x1].parent = i + 1;
ht[x2].parent = i + 1;
ht[i + 1].lchild = x1;
ht[i + 1].rchild = x2;
}
}
void encode(int n)
{
for (int i = 1; i <= n; i++)
{
hc[i].start = n; //编码长度最多为n
int c = i; //当前叶子结点序号
int p = ht[c].parent; //叶子结点双亲序号
while (p)
{
if (ht[p].lchild == c)
hc[i].bit[hc[i].start] = 0;
else
hc[i].bit[hc[i].start] = 1;
hc[i].start--; //准备录入下一位编码
c = p; //上溯
p = ht[c].parent; //上溯,直到while循环结束
}
hc[i].start++; //while循环中,start多退了一位。
}
}
void printCode(int n)
{
len = 0;
char code[1000];
scanf("%s", code);
for (int i = 0; i < strlen(code); i++)
{
for (int j = 1; j <= n; j++)
{
if (code[i] == ht[j].data)
{
for (int k = hc[j].start; k <= n; k++)
{
printf("%d", hc[j].bit[k]);
str[len] = hc[j].bit[k]; //存储待破解编码
len++;
}
}
}
}
printf("\n");
}
void decode(int n) //译码并输出
{
int t;
for (int i = 0; i < len;)
{
t = 2 * n - 1; //根节点
while (ht[t].lchild != 0 && ht[t].rchild != 0) //当找到叶子节点时,退出循环
{
if (str[i] == 0)
t = ht[t].lchild;
else
t = ht[t].rchild;
i++;
}
printf("%c", ht[t].data);
}
}
int main()
{
int n;
scanf("%d", &n);
initTree(n);
encode(n);
printCode(n);
decode(n);
return 0;
}
实验4.1 求赋权图中一个结点到所有结点的最短路径的长度
//求赋权图中一个结点到所有结点的最短路径长度
#include <bits/stdc++.h>
#define MAXSIZE 105
#define INF 10000
int ans[MAXSIZE] = {0};
typedef struct Graph
{
int data[MAXSIZE];
int arc[MAXSIZE][MAXSIZE];
int Vnum, Anum;
} Graph;
typedef struct dijkstra
{
bool visited[MAXSIZE];
int length[MAXSIZE];
} Dij;
void initGraph(Graph *G)
{
scanf("%d", &G->Vnum);
for (int i = 0; i < G->Vnum; i++)
{
for (int j = 0; j < G->Vnum; j++)
{
scanf("%d", &G->arc[i][j]);
}
}
}
void initDij(Graph *G, Dij *D)
{
for (int i = 0; i < G->Vnum; i++)
{
D->visited[i] = 0;
D->length[i] = INF;
}
D->visited[0] = 1;
D->length[0] = 0;
for (int i = 0; i < G->Vnum; i++)
{
if (G->arc[0][i] != 10000)
{
D->length[i] = G->arc[0][i];
}
}
}
int searchMinLengthV(Graph *G, Dij *D)
{
int min = 10000;
int r;
for (int i = 0; i < G->Vnum; i++)
{
if (!D->visited[i] && D->length[i] < min)
{
min = D->length[i];
r = i;
}
}
D->visited[r] = true;
return r;
}
bool judgeFinished(Graph *G, Dij *D)
{
for (int i = 0; i < G->Vnum; i++)
{
if (!D->visited[i])
return false;
}
return true;
}
int min(int a, int b)
{
return a > b ? b : a;
}
void updateArcV(int V0, Graph *G, Dij *D)
{
for (int i = 0; i < G->Vnum; i++)
{
if (G->arc[V0][i] != 10000 && !D->visited[i])
{
D->length[i] = min(D->length[i], D->length[V0] + G->arc[V0][i]);
}
}
}
void findMinPath(Graph *G, Dij *D)
{
initDij(G, D);
for (int i = 0; i < G->Vnum - 1; i++)
{
int t = searchMinLengthV(G, D);
if (judgeFinished(G, D))
return;
updateArcV(t, G, D);
}
}
void printPath(Graph *G, Dij *D)
{
for (int i = 0; i < G->Vnum; i++)
{
printf("%d\n", D->length[i]);
}
}
int main()
{
Graph G;
Dij D;
initGraph(&G);
int ans[MAXSIZE] = {0};
findMinPath(&G, &D);
printPath(&G, &D);
return 0;
}
/*
6
0 1 4 10000 10000 10000
1 0 2 7 5 10000
4 2 0 10000 1 10000
10000 7 10000 0 3 2
10000 5 1 3 0 6
10000 10000 10000 2 6 0
*/
实验4.2 用迪杰斯特拉算法求赋权图中的最短路径
/*实验4.2:用迪杰斯特拉算法求赋权图中的最短路径
核心:
1.与上一题一样更新完成最短路径图
2.从目标结点向前寻找最短路径:按照结点的length递减的顺序;验证length-边长?=上一个结点length
*/
#include <bits/stdc++.h>
using namespace std;
#define MAXSIZE 105
typedef struct Graph
{
int Vnum;
int arc[MAXSIZE][MAXSIZE];
} Graph;
typedef struct Dij
{
bool visited[MAXSIZE];
int length[MAXSIZE];
} Dij;
typedef struct Stack
{
int top;
int data[MAXSIZE];
} Stack;
void push_stack(Stack *S, int e)
{
S->top++;
S->data[S->top] = e;
}
int pop_stack(Stack *S)
{
S->top--;
return S->data[S->top + 1];
}
void init(Graph *G, Dij *D, Stack *S)
{
scanf("%d", &G->Vnum);
for (int i = 0; i < G->Vnum; i++)
{
for (int j = 0; j < G->Vnum; j++)
{
scanf("%d", &G->arc[i][j]);
}
}
for (int i = 0; i < G->Vnum; i++)
{
D->visited[i] = 0;
D->length[i] = G->arc[0][i];
}
D->visited[0] = 1;
S->top = -1;
}
bool is_finished(Graph *G, Dij *D)
{
for (int i = 0; i < G->Vnum; i++)
{
if (!D->visited[i])
{
return false;
}
}
return true;
}
int find_minlength_V(Graph *G, Dij *D)
{
int min = 10005;
int min_V;
for (int i = 0; i < G->Vnum; i++)
{
if (!D->visited[i] && D->length[i] < min)
{
min = D->length[i];
min_V = i;
}
}
return min_V;
}
void update_arc_V(Graph *G, Dij *D, int v)
{
D->visited[v] = true;
for (int i = 0; i < G->Vnum; i++)
{
if (!D->visited[i] && D->length[v] + G->arc[i][v] < D->length[i])
{
D->length[i] = D->length[v] + G->arc[i][v];
}
}
}
void caculate_minlength_for_each_V(Graph *G, Dij *D)
{
for (int i = 0; i < G->Vnum; i++)
{
if (is_finished(G, D))
{
return;
}
int v = find_minlength_V(G, D);
update_arc_V(G, D, v);
}
}
void find_path(Graph *G, Dij *D, Stack *S)
{
int start, end;
scanf("%d%d", &start, &end);
push_stack(S, end);
while (end != start)
{
for (int i = 0; i < G->Vnum; i++)
{
if (G->arc[i][end] != 10000 && D->length[i] < D->length[end] && D->length[i] + G->arc[i][end] == D->length[end])
{
push_stack(S, i);
end = i;
}
}
}
}
void print_path(Stack *S)
{
while (S->top > -1)
{
printf("%d\n", pop_stack(S));
}
}
int main()
{
Graph G;
Dij D;
Stack S;
init(&G, &D, &S);
caculate_minlength_for_each_V(&G, &D);
int path[MAXSIZE];
find_path(&G, &D, &S);
print_path(&S);
return 0;
}
/*
4
0 2 10 10000
2 0 7 3
10 7 0 6
10000 3 6 0
0 2
*/
实验4.3 用弗洛伊德算法求赋权图的两点间的最短路径的长度
文章来源:https://www.toymoban.com/news/detail-405112.html
//010用弗洛伊德算法求赋权图的两点间的最短路径长度
#include <bits/stdc++.h>
#define MAXSIZE 105
#define INF 10000
using namespace std;
typedef struct Graph
{
int vnum;
int arc[MAXSIZE][MAXSIZE];
int path[MAXSIZE][MAXSIZE];
} Graph;
void init_Graph(Graph *G)
{
scanf("%d", &G->vnum);
for (int i = 0; i < G->vnum; i++)
{
for (int j = 0; j < G->vnum; j++)
{
scanf("%d", &G->arc[i][j]);
G->path[i][j] = -1;
}
}
}
void floyd(Graph *G)
{
for (int m = 0; m < G->vnum; m++)
for (int a = 0; a < G->vnum; a++)
for (int b = 0; b < G->vnum; b++)
{
if (G->arc[a][b] > G->arc[a][m] + G->arc[m][b])
{
G->arc[a][b] = G->arc[a][m] + G->arc[m][b];
G->path[a][b] = m;
}
}
}
void print_result(Graph *G)
{
int n;
scanf("%d", &n);
for (int i = 0; i < n; i++)
{
int a, b;
scanf("%d%d", &a, &b);
printf("%d\n", G->arc[a][b]);
}
}
int main()
{
Graph G;
init_Graph(&G);
floyd(&G);
print_result(&G);
return 0;
}
/*
4
0 2 10 10000
2 0 7 3
10 7 0 6
10000 3 6 0
2
0 2
3 0
*/
实验4.4 用弗洛伊德算法求赋权图中任意两点间的最短路径
文章来源地址https://www.toymoban.com/news/detail-405112.html
//011用弗洛伊德算法求赋权图任意两点间的最短路径
#include <bits/stdc++.h>
#define MAXSIZE 105
#define INF 10000
using namespace std;
typedef struct Graph
{
int vnum;
int arc[MAXSIZE][MAXSIZE];
int path[MAXSIZE][MAXSIZE];
} Graph;
typedef struct Stack
{
int top;
int data[MAXSIZE];
} Stack;
void init_Stack(Stack *S)
{
S->top = -1;
}
void push_Stack(Stack *S, int e)
{
S->top++;
S->data[S->top] = e;
}
int pop_Stack(Stack *S)
{
S->top--;
return S->data[S->top + 1];
}
void init_Graph(Graph *G)
{
scanf("%d", &G->vnum);
for (int i = 0; i < G->vnum; i++)
{
for (int j = 0; j < G->vnum; j++)
{
scanf("%d", &G->arc[i][j]);
G->path[i][j] = -1;
}
}
}
void floyd(Graph *G)
{
for (int m = 0; m < G->vnum; m++)
for (int a = 0; a < G->vnum; a++)
for (int b = 0; b < G->vnum; b++)
{
if (G->arc[a][b] > G->arc[a][m] + G->arc[m][b])
{
G->arc[a][b] = G->arc[a][m] + G->arc[m][b];
G->path[a][b] = m;
}
}
}
void find_path(Graph *G, Stack *S, int a, int b)
{
push_Stack(S, b);
if (G->path[a][b] == -1)
{
push_Stack(S, a);
return;
}
else
{
find_path(G, S, a, G->path[a][b]);
}
}
void print_result(Graph *G, Stack *S)
{
int n;
scanf("%d", &n);
for (int i = 0; i < n; i++)
{
int a, b;
scanf("%d%d", &a, &b);
init_Stack(S);
find_path(G, S, a, b);
while (S->top > -1)
{
printf("%d\n", pop_Stack(S));
}
}
}
int main()
{
Graph G;
Stack S;
init_Graph(&G);
floyd(&G);
print_result(&G, &S);
return 0;
}
/*
4
0 2 10 10000
2 0 7 3
10 7 0 6
10000 3 6 0
2
0 2
3 0
*/
到了这里,关于西工大数据结构实验NOJ参考代码和分析合集的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!