深入理解PyTorch中的train()、eval()和no_grad()

这篇具有很好参考价值的文章主要介绍了深入理解PyTorch中的train()、eval()和no_grad()。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️

👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈

深入理解PyTorch中的train()、eval()和no_grad()

(封面图由文心一格生成)

深入理解PyTorch中的train()、eval()和no_grad()

在PyTorch中,train()、eval()和no_grad()是三个非常重要的函数,用于在训练和评估神经网络时进行不同的操作。在本文中,我们将深入了解这三个函数的区别与联系,并结合代码进行讲解。

什么是train()函数?

在PyTorch中,train()方法是用于在训练神经网络时启用dropout、batch normalization和其他特定于训练的操作的函数。这个方法会通知模型进行反向传播,并更新模型的权重和偏差。

在训练期间,我们通常会对模型的参数进行调整,以使其更好地拟合训练数据。而dropout和batch normalization层的行为可能会有所不同,因此在训练期间需要启用它们。

下面是一个使用train()方法的示例代码:

import torch
import torch.nn as nn
import torch.optim as optim

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.fc2 = nn.Linear(5, 2)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

model = MyModel()
optimizer = optim.SGD(model.parameters(), lr=0.1)
criterion = nn.CrossEntropyLoss()

for epoch in range(num_epochs):
    model.train()
    optimizer.zero_grad()
    outputs = model(inputs)
    loss = criterion(outputs, targets)
    loss.backward()
    optimizer.step()

在上面的代码中,我们首先定义了一个简单的神经网络模型MyModel,它包含两个全连接层。然后我们定义了一个优化器和损失函数,用于训练模型。

在训练循环中,我们首先使用train()方法启用dropout和batch normalization层,然后计算模型的输出和损失,进行反向传播,并使用优化器更新模型的权重和偏差。

什么是eval()函数?

eval()方法是用于在评估模型性能时禁用dropout和batch normalization的函数。它还可以用于在测试数据上进行推理。这个方法不会更新模型的权重和偏差。

在评估期间,我们通常只需要使用模型来生成预测结果,而不需要进行参数调整。因此,在评估期间应该禁用dropout和batch normalization,以确保模型的行为是一致的。

下面是一个使用eval()方法的示例代码:

for epoch in range(num_epochs):
    model.eval()
    with torch.no_grad():
        outputs = model(inputs)
        loss = criterion(outputs, targets)

在上面的代码中,我们使用eval()方法禁用dropout和batch normalization层,并使用no_grad()函数禁止梯度计算。
在no_grad()函数中禁止梯度计算是为了避免在评估期间浪费计算资源,因为我们通常不需要计算梯度。

什么是no_grad()函数?

no_grad()方法是用于在评估模型性能时禁用autograd引擎的梯度计算的函数。这是因为在评估过程中,我们通常不需要计算梯度。因此,使用no_grad()方法可以提高代码的运行效率。

在PyTorch中,所有的张量都可以被视为计算图中的节点,每个节点都有一个梯度,用于计算反向传播。no_grad()方法可以用于禁止梯度计算,从而节省内存和计算资源。

下面是一个使用no_grad()方法的示例代码:

with torch.no_grad():
    outputs = model(inputs)
    loss = criterion(outputs, targets)

在上面的代码中,我们使用no_grad()方法禁止梯度计算,并计算模型的输出和损失。

train()、eval()和no_grad()函数的联系

三个函数之间的联系非常紧密,因为它们都涉及到模型的训练和评估。在训练期间,我们需要启用dropout和batch normalization,以便更好地拟合训练数据,并使用autograd引擎计算梯度。在评估期间,我们需要禁用dropout和batch normalization,以确保模型的行为是一致的,并使用no_grad()方法禁止梯度计算。

下面是一个完整的示例代码,展示了如何使用train()、eval()和no_grad()函数来训练和评估一个简单的神经网络模型:

import torch
import torch.nn as nn
import torch.optim as optim

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.fc2 = nn.Linear(5, 2)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

model = MyModel()
optimizer = optim.SGD(model.parameters(), lr=0.1)
criterion = nn.CrossEntropyLoss()

# 训练模型
model.train()
for epoch in range(num_epochs):
    optimizer.zero_grad()
    outputs = model(inputs)
    loss = criterion(outputs, targets)
    loss.backward()
    optimizer.step()

# 评估模型
model.eval()
with torch.no_grad():
    outputs = model(inputs)
    loss = criterion(outputs, targets)

在上面的代码中,我们首先定义了一个简单的神经网络模型MyModel,然后定义了一个优化器和损失函数,用于训练和评估模型。

在训练循环中,我们首先使用train()方法启用dropout和batch normalization层,并进行反向传播和优化器更新。在评估循环中,我们使用eval()方法禁用dropout和batch normalization层,并使用no_grad()方法禁止梯度计算,计算模型的输出和损失。

总结

在本文中,我们介绍了PyTorch中的train()、eval()和no_grad()函数,并深入了解了它们的区别与联系。在训练神经网络模型时,我们需要使用train()函数启用dropout和batch normalization,并使用autograd引擎计算梯度。在评估模型性能时,我们需要使用eval()函数禁用dropout和batch normalization,并使用no_grad()函数禁止梯度计算,以提高代码的运行效率。这三个函数是PyTorch中非常重要的函数,熟练掌握它们对于训练和评估神经网络模型非常有帮助。文章来源地址https://www.toymoban.com/news/detail-405337.html


❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️

👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈

到了这里,关于深入理解PyTorch中的train()、eval()和no_grad()的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • with torch.no_grad() 详解

    在使用pytorch时,并不是所有的操作都需要进行计算图的生成,只是想要网络结果的话就不需要后向传播 ,如果你想通过网络输出的结果去进一步优化网络的话 就需要后向传播了。 不使用with torch.no_grad() :此时有grad_fn=属性,表示,计算的结果在一计算图当中, 可以进行梯度

    2024年02月16日
    浏览(37)
  • 【Python】torch.no_grad()函数详解和示例

    torch.no_grad() 是 PyTorch 中的一个上下文管理器,用于在进入该上下文时禁用梯度计算。这在你只关心评估模型,而不是训练模型时非常有用,因为它可以显著减少内存使用并加速计算。 当你在 torch.no_grad() 上下文管理器中执行张量操作时,PyTorch 不会为这些操作计算梯度。这意

    2024年03月12日
    浏览(52)
  • python:torch.no_grad()的作用 + requires_grad,grad_fn,grad的含义及使用

    requires_grad: grad_fn: grad: 说法1: 说法2: 代码: 保证param原地数值改变操作下requires_grad=True不变。 参考资料: requires_grad,grad_fn,grad的含义及使用 测试torch.no_grad()的作用 pytorch中torch.no_grad有什么用? PyTorch 中的“with torch no_grad”有什么作用?

    2024年02月17日
    浏览(45)
  • 【pytorch】同一个模型model.train()和model.eval()模式下的输出完全不同

    测试时为什么要使用model.eval() - 小筱痕 - 博客园 (cnblogs.com) 输出不同的原因是由于student模型中的某些层的行为不同。一些层,如dropout和batch normalization,在训练和评估过程中的行为是不同的。 在训练过程中,dropout层会随机将一部分输入置为零,这有助于防止过拟合。dropou

    2024年02月12日
    浏览(61)
  • 深入理解PyTorch中的NoamOpt优化器

    作者:安静到无声 个人主页 今天,我们将深入探讨一个在自然语言处理领域广泛使用的优化器——NoamOpt。这个优化器是基于PyTorch实现的,并且在\\\"Attention is All You Need\\\"这篇论文中首次提出。 NoamOpt是一种特殊的学习率调度策略,它结合了两种不同的学习率调度方法:线性预热

    2024年02月13日
    浏览(49)
  • 深入理解PyTorch中的nn.Embedding

    太长不看版: NLP任务所依赖的语言数据称为语料库。 详细介绍版: 语料库(Corpus,复数是Corpora)是组织成数据集的真实文本或音频的集合。 此处的真实是指由该语言的母语者制作的文本或音频。 语料库可以由从报纸、小说、食谱、广播到电视节目、电影和推文的所有内容

    2024年02月09日
    浏览(57)
  • 深入理解深度学习——GPT(Generative Pre-Trained Transformer):基础知识

    分类目录:《深入理解深度学习》总目录 相关文章: · GPT(Generative Pre-Trained Transformer):基础知识 · GPT(Generative Pre-Trained Transformer):在不同任务中使用GPT · GPT(Generative Pre-Trained Transformer):GPT-2与Zero-shot Learning · GPT(Generative Pre-Trained Transformer):GPT-3与Few-shot Learning

    2024年02月10日
    浏览(61)
  • 深入理解深度学习——GPT(Generative Pre-Trained Transformer):在不同任务中使用GPT

    分类目录:《自然语言处理从入门到应用》总目录 相关文章: · GPT(Generative Pre-Trained Transformer):基础知识 · GPT(Generative Pre-Trained Transformer):在不同任务中使用GPT · GPT(Generative Pre-Trained Transformer):GPT-2与Zero-shot Learning · GPT(Generative Pre-Trained Transformer):GPT-3与Few-s

    2024年02月10日
    浏览(51)
  • model.train()和model.eval()两种模式的原理

    1. model.train() 在使用 pytorch 构建神经网络的时候,训练过程中会在程序上方添加一句model.train(),作用是 启用 batch normalization 和 dropout 。 如果模型中有BN层(Batch Normalization)和 Dropout ,需要在 训练时 添加 model.train()。 model.train() 是保证 BN 层能够用到 每一批数据 的均值和方差

    2024年02月20日
    浏览(34)
  • 深入理解深度学习——GPT(Generative Pre-Trained Transformer):GPT-3与Few-shot Learning

    分类目录:《深入理解深度学习》总目录 相关文章: · GPT(Generative Pre-Trained Transformer):基础知识 · GPT(Generative Pre-Trained Transformer):在不同任务中使用GPT · GPT(Generative Pre-Trained Transformer):GPT-2与Zero-shot Learning · GPT(Generative Pre-Trained Transformer):GPT-3与Few-shot Learning

    2024年02月10日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包