作者🕵️♂️:让机器理解语言か
专栏🎇:NLP(自然语言处理)
描述🎨:让机器理解语言,让世界更加美好!
寄语💓:🐾没有白走的路,每一步都算数!🐾
(本文是chatGPT原理介绍,但没有任何数学公式,可以放心食用)
前言
这几个月,chatGPT模型真可谓称得上是狂拽酷炫D炸天的存在了。一度登上了知乎热搜,这对科技类话题是非常难的存在。不光是做人工智能、机器学习的人关注,而是大量的各行各业从业人员都来关注这个模型,真可谓空前盛世。
我赶紧把 openai 以往的 GPT-n 系列论文又翻出来,重新学习一下,认真领会大规模预训练语言模型(Large Language Model)的强大之处。
可能很多深度学习相关从业人员的感受和我一样,大家之前对 LLM 的感受依然是,预训练+finetune,处理下游任务,依然需要大量的标注数据和人工干预,怎么突然间,chatGPT 就智能到如此地步?
注:FineTune: 基于预训练模型(Pre-trained mode)进行的微调(Fine Tune )。
Q:finetune 就是微调的意思,那为什么要微调呢,为什么不能自己重新训练一个网络呢?
A:因为我们没那么多样本,没那么高超的技术使神经网络合理且有用,因此我在训练好的模型的基础上只训练其中一个或几个层,而把其他层的参数都冻结起来。相对于你从头开始训练(Training a model from scatch),微调为你省去大量计算资源和计算时间,提高了计算效率,甚至提高准确率。
接下来,我简要梳理一下 openai 的 GPT 大模型的发展历程。
一、还得从 Bert 说起
2018年,自然语言处理 NLP 领域也步入了 LLM (大型语言模型)时代,谷歌出品的 Bert 模型横空出世,碾压了以往的所有模型,直接在各种NLP的建模任务中取得了最佳的成绩。
Bert做了什么,主要用以下例子做解释。
请各位做一个完形填空:___________和阿里、腾讯一起并成为中国互联网 BAT 三巨头。
请问上述空格应该填什么?有的人回答“百度”,有的人可能觉得,“字节”也没错。但总不再可能是别的字了。
不论填什么,这里都表明,空格处填什么字,是受到上下文决定和影响的。
Bert 所作的事就是从大规模的上亿的文本预料中,随机地扣掉一部分字,形成上面例子的完形填空题型,不断地学习空格处到底该填写什么。所谓语言模型,就是从大量的数据中学习复杂的上下文联系。
二、GPT 初代
与此同时,openai 早于 Bert 出品了一个初代 GPT 模型。
他们大致思想是一样的。都基于 Transformer 这种编码器,获取了文本内部的相互联系。
编解码的概念广泛应用于各个领域,在 NLP 领域,人们使用语言一般包括三个步骤:
接受听到或读到的语言 -> 大脑理解 -> 输出要说的语言。
语言是一个显式存在的东西,但大脑是如何将语言进行理解、转化和存储的,则是一个目前仍未探明的东西。因此,大脑理解语言这个过程,就是大脑将语言编码成一种可理解、可存储形式的过程,这个过程就叫做语言的编码。相应的,把大脑中想要表达的内容,使用语言表达出来,就叫做语言的解码。
在语言模型中,编码器和解码器都是由一个个的 Transformer 组件拼接在一起形成的。
这里不展开讲 Transformer 里的内部结构,仅仅讲一下 Bert 和 GPT 的区别。
两者最主要的区别在于,Bert 仅仅使用了 encoder 也就是编码器部分进行模型训练,GPT 仅仅使用了 decoder 部分。两者各自走上了各自的道路,根据我粗浅的理解,GPT 的decoder 模型更加适应于文本生成领域。
GPT 初代其实个人认为(当然普遍也都这么认为)略逊色于 Bert,再加上宣传地不够好,影响力也就小于 Bert。
我相信很多的 NLP 从业者对 LLM 的理解也大都停留在此。即,本质上讲,LLM 是一个非常复杂的编码器,将文本表示成一个向量表示,这个向量表示有助于解决 NLP 的任务。
三、GPT-2
自从 Bert 炸街后,跟风效仿的改进模型也就越来越多了,比如 albert、roberta、ERNIE,BART、XLNET、T5 等等五花八门。
最初的时候,仅仅是一个完形填空任务就可以让语言模型有了极大进步,那么,给 LLM 模型出其它的语言题型,应该也会对模型训练有极大的帮助。
想要出语言题型不是很简单么,什么句子打乱顺序再排序、选择题、判断题、改错题、把预测单字改成预测实体词汇等等,纷纷都可以制定数据集添加在模型的预训练里。很多模型也都是这么干的。
既然出题也可以,把各种NLP任务的数据集添加到预训练阶段当然也可以。
这个过程也和人脑很像,人脑是非常稳定和泛化的,既可以读诗歌,也可以学数学,还可以学外语,看新闻,听音乐等等,简而言之,就是一脑多用。
我们一般的 NLP 任务,文本分类模型就只能分类,分词模型就只能分词,机器翻译也就只能完成翻译这一件事,非常不灵活。
GPT-2 主要就是在 GPT 的基础上,又添加了多个任务,扩增了数据集和模型参数,又训练了一番。
既然多个任务都在同一个模型上进行学习,还存在一个问题,这一个模型能承载的并不仅仅是任务本身,“汪小菲的妈是张兰”,这条文字包含的信息量是通用的,它既可以用于翻译,也可以用于分类,判断错误等等。也就是说,信息是脱离具体 NLP 任务存在的,举一反三,能够利用这条信息,在每一个 NLP 任务上都表现好,这个是 元学习(meta-learning),实际上就是语言模型的一脑多用。
四、GPT-3
大模型中的大模型
首先, GPT-3 的模型所采用的数据量之大,高达上万亿,模型参数量也十分巨大,学习之复杂,计算之繁复不说了,看图吧。
GPT-3 里的大模型计算量是 Bert-base 的上千倍。统统这些都是在燃烧的金钱,真就是 all you need is money。如此巨大的模型造就了 GPT-3 在许多十分困难的 NLP 任务,诸如撰写人类难以判别的文章,甚至编写SQL查询语句,React或者JavaScript代码上优异的表现。
首先 GPT-n 系列模型都是采用 decoder 进行训练的,也就是更加适合文本生成的形式。也就是,输入一句话,输出也是一句话。也就是对话模式。
对话
我们是如何学会中文的?通过从0岁开始,听,说,也就是对话。
我们是如何学外语的?看教材,听广播,背单词。唯独缺少了对话!正是因为缺少了对话这个高效的语言学习方式,所以我们的英语水平才如此难以提高。
对于语言模型,同理。
对话是涵盖一切NLP 任务的终极任务。从此 NLP不再需要模型建模这个过程。比如,传统 NLP 里还有序列标注这个任务,需要用到 CRF 这种解码过程。在对话的世界里,这些统统都是冗余的。
其实 CRF 这项技术还是蛮经典的,在深度学习这块,CRF这也才过去没几年。
注:条件随机场(Conditional Random Field,CRF)是自然语言处理的基础模型,广泛应用于中文分词、命名实体识别、词性标注等标注场景
in-context learning(上下文学习)
以往的预训练都是两段式的,即,首先用大规模的数据集对模型进行预训练,然后再利用下游任务的标注数据集进行 finetune(微调),时至今日这也是绝大多数 NLP 模型任务的基本工作流程。
GPT-3 就开始颠覆这种认知了。它提出了一种 in-context 学习方式。这个词没法翻译成中文,下面举一个例子进行解释。
用户输入到 GPT-3:你觉得 chatNLP 是个好用的工具吗?
GPT-3输出1:我觉得很好啊。
GPT-3输出2:chatNLP是什么东西?
GPT-3输出3:你饿不饿,我给你做碗面吃……
GPT-3输出4:Do you think chatNlp is a good tool?
按理来讲,针对机器翻译任务,我们当然希望模型输出最后一句,针对对话任务,我们希望模型输出前两句中的任何一句。显然做碗面这个输出句子显得前言不搭后语。
这时就有了 in-context 学习,也就是,我们对模型进行引导,教会它应当输出什么内容。如果我们希望它输出翻译内容,那么,应该给模型如下输入:
用户输入到 GPT-3:请把以下中文翻译成中文:你觉得 JioNLP 是个好用的工具吗?
如果想让模型回答问题:
用户输入到 GPT-3:模型模型你说说,你觉得 JioNLP 是个好用的工具吗?
OK,这样模型就可以根据用户提示的情境,进行针对性的回答了。
这里,只是告知了模型如何做,最好能够给模型做个示范:
用户输入到 GPT-3:请把以下中文翻译成英文:苹果 => apple; 你觉得 chatNLP 是个好用的工具吗?=>
其中 苹果翻译成 apple,是一个示范样例,用于让模型感知该输出什么。只给提示叫做 zero-shot,给一个范例叫做 one-shot,给多个范例叫做 few-shot。
范例给几个就行了,不能再给多了!一个是,咱们没那么多标注数据,另一个是,给多了不就又成了 finetune 模式了么?
在 GPT-3 的预训练阶段,也是按照这样多个任务同时学习的。比如“ 做数学加法,改错,翻译”同时进行。这其实就类似前段时间比较火的 prompt。
这种引导学习的方式,在超大模型上展示了惊人的效果:只需要给出一个或者几个示范样例,模型就能照猫画虎地给出正确答案。注意啊,是超大模型才可以,一般几亿参数的大模型是不行的。(我们这里没有小模型,只有大模型、超大模型、巨大模型)
这个表格彷佛在嘲讽我:哎,你没钱,你就看不着这种优质的效果,你气不气?
五、chatGPT
charGPT 模型上基本上和之前都没有太大变化,主要变化的是训练策略变了。
强化学习(Reinforcement Learning)
几年前,alpha GO 击败了柯洁,几乎可以说明,强化学习如果在适合的条件下,完全可以打败人类,逼近完美的极限。
强化学习非常像生物进化,模型在给定的环境中,不断地根据环境的惩罚和奖励(reward),拟合到一个最适应环境的状态。
强化学习之所以能比较容易地应用在围棋以及其它各种棋牌游戏里,原因就是因为对于 alpha Go 而言,环境就是围棋,围棋棋盘就是它的整个世界。
而几年前知乎上就有提问,NLP + 强化学习,可以做吗?怎么做呢?
底下回答一片唱衰,原因就是因为,NLP 所依赖的环境,是整个现实世界,整个世界的复杂度,远远不是一个19乘19的棋盘可以比拟的。无法设计反馈惩罚和奖励函数,即 reward 函数。除非人们一点点地人工反馈。
哎,open-ai 的 chatGPT 就把这事给干了。
不是需要人工标反馈和奖励吗?那就撒钱,找40个外包,标起来!
这种带人工操作的 reward,被称之为 RLHF(Reinforcement Learning from Human Feedback)。
具体操作过程就是下图的样子,采用强化学习的方式来对模型进行训练。已经抛弃了传统的 LM 方式。
这里重点是第二部中,如何构建一个 reward 函数,具体就是让那40名外包人员不断地从模型的输出结果中筛选,哪些是好的,哪些是低质量的,这样就可以训练得到一个 reward 模型。
通过reward 模型来评价模型的输出结果好坏。
讲真,这个 reward 模型,《黑客帝国》的母体 matrix 既视感有木有??!!
只要把预训练模型接一根管子在 reward 模型上,预训练模型就会开始像感知真实世界那样,感知reward。
由此,我们就可以得到这个把全世界都震碎的高音!(误,模型)
chatGPT 功能一览
-
能回答知乎上的问题
-
你别想耍它
-
能回答困难的问题
-
能理解乱序文本
-
会做高数
-
知道自己是程序,不会做你女票
-
还能处理程序 bug
六、影响
NLP 领域的影响
个人认为,NLP 领域的一些里程碑性的技术重要性排序如下:
chatGPT > word2vec > Bert (纯个人看法)
chatGPT 的关注度已经很大程度让人们感觉到,什么天猫精灵、小爱同学等等人工智障的时代似乎过去了。只要模型足够大,数据足够丰富,reward 模型经过了更多的人迭代和优化,完全可以创造一个无限逼近真实世界的超级 openai 大脑。
当然,chat GPT 依然是存在回答不好的情况的,比如会重复一些词句,无法分清楚事实等等。
而且,chatGPT 目前看,它是没有在推理阶段连接外部信息的。
模型知道自己的回答边界,知道自己只是一个没有情感的回答工具。那么,试想 openai 把外部信息也导入到 chatGPT 里。
另一些影响
我看到 chatGPT 居然可以写代码,还能帮我改代码,debug,作为程序员,我不禁深深陷入了沉思。
据说,debug 程序员网站 stackoverflow,已经下场封杀 chatGPT 了。
文章来源:https://www.toymoban.com/news/detail-405705.html
当然,完全不仅仅是程序界。据说 GPT-4 正在做图文理解,那么,对于教师、医生、咨询师、等等等等,各行各业,是不是都是一个巨大的冲击?所谓专业领域的知识门槛,也将被模型一步踏平。到时候,可能人类真的要靠边站了,除了某些高精尖的行业精英。文章来源地址https://www.toymoban.com/news/detail-405705.html
到了这里,关于ChatGPT的前世今生的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!