ChatGPT的前世今生

这篇具有很好参考价值的文章主要介绍了ChatGPT的前世今生。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作者🕵️‍♂️:让机器理解语言か

专栏🎇:NLP(自然语言处理)

描述🎨:让机器理解语言,让世界更加美好!

寄语💓:🐾没有白走的路,每一步都算数!🐾

本文是chatGPT原理介绍,但没有任何数学公式,可以放心食用

前言

这几个月,chatGPT模型真可谓称得上是狂拽酷炫D炸天的存在了。一度登上了知乎热搜,这对科技类话题是非常难的存在。不光是做人工智能、机器学习的人关注,而是大量的各行各业从业人员都来关注这个模型,真可谓空前盛世。

我赶紧把 openai 以往的 GPT-n 系列论文又翻出来,重新学习一下,认真领会大规模预训练语言模型(Large Language Model)的强大之处。

可能很多深度学习相关从业人员的感受和我一样,大家之前对 LLM 的感受依然是,预训练+finetune,处理下游任务,依然需要大量的标注数据和人工干预,怎么突然间,chatGPT 就智能到如此地步?

注:FineTune: 基于预训练模型(Pre-trained mode)进行的微调(Fine Tune )。

Q:finetune 就是微调的意思,那为什么要微调呢,为什么不能自己重新训练一个网络呢?

A:因为我们没那么多样本,没那么高超的技术使神经网络合理且有用,因此我在训练好的模型的基础上只训练其中一个或几个层,而把其他层的参数都冻结起来。相对于你从头开始训练(Training a model from scatch),微调为你省去大量计算资源和计算时间,提高了计算效率,甚至提高准确率

接下来,我简要梳理一下 openai 的 GPT 大模型的发展历程。

一、还得从 Bert 说起

2018年,自然语言处理 NLP 领域也步入了 LLM (大型语言模型)时代,谷歌出品的 Bert 模型横空出世,碾压了以往的所有模型,直接在各种NLP的建模任务中取得了最佳的成绩。

Bert做了什么,主要用以下例子做解释。

请各位做一个完形填空:___________和阿里、腾讯一起并成为中国互联网 BAT 三巨头。

请问上述空格应该填什么?有的人回答“百度”,有的人可能觉得,“字节”也没错。但总不再可能是别的字了。

不论填什么,这里都表明,空格处填什么字,是受到上下文决定和影响的

Bert 所作的事就是从大规模的上亿的文本预料中,随机地扣掉一部分字,形成上面例子的完形填空题型,不断地学习空格处到底该填写什么所谓语言模型,就是从大量的数据中学习复杂的上下文联系。

二、GPT 初代

与此同时,openai 早于 Bert 出品了一个初代 GPT 模型。

他们大致思想是一样的。都基于 Transformer 这种编码器,获取了文本内部的相互联系

ChatGPT的前世今生
Transformer结构

编解码的概念广泛应用于各个领域,在 NLP 领域,人们使用语言一般包括三个步骤:

接受听到或读到的语言 -> 大脑理解 -> 输出要说的语言。

语言是一个显式存在的东西,但大脑是如何将语言进行理解、转化和存储的,则是一个目前仍未探明的东西。因此,大脑理解语言这个过程,就是大脑将语言编码成一种可理解、可存储形式的过程,这个过程就叫做语言的编码。相应的,把大脑中想要表达的内容,使用语言表达出来,就叫做语言的解码

在语言模型中,编码器和解码器都是由一个个的 Transformer 组件拼接在一起形成的

ChatGPT的前世今生
Transformer编码器组成的 Encoder-decoder模型

这里不展开讲 Transformer 里的内部结构,仅仅讲一下 Bert 和 GPT  的区别。

两者最主要的区别在于,Bert 仅仅使用了 encoder 也就是编码器部分进行模型训练,GPT 仅仅使用了 decoder 部分。两者各自走上了各自的道路,根据我粗浅的理解,GPT 的decoder 模型更加适应于文本生成领域

GPT 初代其实个人认为(当然普遍也都这么认为)略逊色于 Bert,再加上宣传地不够好,影响力也就小于 Bert。

我相信很多的 NLP 从业者对 LLM 的理解也大都停留在此。即,本质上讲,LLM 是一个非常复杂的编码器,将文本表示成一个向量表示,这个向量表示有助于解决 NLP 的任务。

三、GPT-2

自从 Bert 炸街后,跟风效仿的改进模型也就越来越多了,比如 albert、roberta、ERNIE,BART、XLNET、T5 等等五花八门。

最初的时候,仅仅是一个完形填空任务就可以让语言模型有了极大进步,那么,给 LLM 模型出其它的语言题型,应该也会对模型训练有极大的帮助。

想要出语言题型不是很简单么,什么句子打乱顺序再排序、选择题、判断题、改错题、把预测单字改成预测实体词汇等等,纷纷都可以制定数据集添加在模型的预训练里。很多模型也都是这么干的。

既然出题也可以,把各种NLP任务的数据集添加到预训练阶段当然也可以。

这个过程也和人脑很像,人脑是非常稳定和泛化的,既可以读诗歌,也可以学数学,还可以学外语,看新闻,听音乐等等,简而言之,就是一脑多用

我们一般的 NLP 任务,文本分类模型就只能分类,分词模型就只能分词,机器翻译也就只能完成翻译这一件事,非常不灵活。

GPT-2 主要就是在 GPT 的基础上,又添加了多个任务扩增了数据集和模型参数,又训练了一番。

ChatGPT的前世今生
GPT-2学习效果图

既然多个任务都在同一个模型上进行学习,还存在一个问题,这一个模型能承载的并不仅仅是任务本身,“汪小菲的妈是张兰”,这条文字包含的信息量是通用的,它既可以用于翻译,也可以用于分类,判断错误等等。也就是说,信息是脱离具体 NLP 任务存在的,举一反三,能够利用这条信息,在每一个 NLP 任务上都表现好,这个是 元学习(meta-learning),实际上就是语言模型的一脑多用

四、GPT-3

大模型中的大模型

首先, GPT-3 的模型所采用的数据量之大,高达上万亿,模型参数量也十分巨大,学习之复杂,计算之繁复不说了,看图吧。

ChatGPT的前世今生
训练中使用的计算总数

GPT-3 里的大模型计算量是 Bert-base 的上千倍。统统这些都是在燃烧的金钱,真就是 all you need is money。如此巨大的模型造就了 GPT-3 在许多十分困难的 NLP 任务,诸如撰写人类难以判别的文章,甚至编写SQL查询语句,React或者JavaScript代码上优异的表现。

首先 GPT-n 系列模型都是采用 decoder 进行训练的,也就是更加适合文本生成的形式。也就是,输入一句话,输出也是一句话。也就是对话模式。

对话

我们是如何学会中文的?通过从0岁开始,听,说,也就是对话

我们是如何学外语的?看教材,听广播,背单词。唯独缺少了对话!正是因为缺少了对话这个高效的语言学习方式,所以我们的英语水平才如此难以提高。

对于语言模型,同理。

对话是涵盖一切NLP 任务的终极任务。从此 NLP不再需要模型建模这个过程。比如,传统 NLP 里还有序列标注这个任务,需要用到 CRF 这种解码过程。在对话的世界里,这些统统都是冗余的。

其实 CRF 这项技术还是蛮经典的,在深度学习这块,CRF这也才过去没几年。

注:条件随机场Conditional Random Field,CRF)是自然语言处理的基础模型,广泛应用于中文分词、命名实体识别、词性标注等标注场景

in-context learning(上下文学习)

以往的预训练都是两段式的,即,首先用大规模的数据集对模型进行预训练,然后再利用下游任务的标注数据集进行 finetune(微调),时至今日这也是绝大多数 NLP 模型任务的基本工作流程。

GPT-3 就开始颠覆这种认知了。它提出了一种 in-context 学习方式。这个词没法翻译成中文,下面举一个例子进行解释。

用户输入到 GPT-3:你觉得 chatNLP 是个好用的工具吗?

GPT-3输出1:我觉得很好啊。

GPT-3输出2:chatNLP是什么东西?

GPT-3输出3:你饿不饿,我给你做碗面吃……

GPT-3输出4:Do you think chatNlp is a good tool?

按理来讲,针对机器翻译任务,我们当然希望模型输出最后一句,针对对话任务,我们希望模型输出前两句中的任何一句。显然做碗面这个输出句子显得前言不搭后语。

这时就有了 in-context 学习,也就是,我们对模型进行引导,教会它应当输出什么内容。如果我们希望它输出翻译内容,那么,应该给模型如下输入:

用户输入到 GPT-3:请把以下中文翻译成中文:你觉得 JioNLP 是个好用的工具吗?

如果想让模型回答问题:

用户输入到 GPT-3:模型模型你说说,你觉得 JioNLP 是个好用的工具吗?

OK,这样模型就可以根据用户提示的情境,进行针对性的回答了。

这里,只是告知了模型如何做,最好能够给模型做个示范

用户输入到 GPT-3:请把以下中文翻译成英文:苹果 => apple; 你觉得 chatNLP 是个好用的工具吗?=>

其中 苹果翻译成 apple,是一个示范样例,用于让模型感知该输出什么。只给提示叫做 zero-shot,给一个范例叫做 one-shot,给多个范例叫做 few-shot。

ChatGPT的前世今生

范例给几个就行了,不能再给多了!一个是,咱们没那么多标注数据,另一个是,给多了不就又成了 finetune 模式了么?

ChatGPT的前世今生

在 GPT-3 的预训练阶段,也是按照这样多个任务同时学习的。比如“ 做数学加法,改错,翻译”同时进行。这其实就类似前段时间比较火的 prompt

这种引导学习的方式,在超大模型上展示了惊人的效果:只需要给出一个或者几个示范样例,模型就能照猫画虎地给出正确答案。注意啊,是超大模型才可以,一般几亿参数的大模型是不行的。(我们这里没有小模型,只有大模型、超大模型、巨大模型

ChatGPT的前世今生

这个表格彷佛在嘲讽我:哎,你没钱,你就看不着这种优质的效果,你气不气?

五、chatGPT

charGPT 模型上基本上和之前都没有太大变化,主要变化的是训练策略变了。

强化学习(Reinforcement Learning

几年前,alpha GO 击败了柯洁,几乎可以说明,强化学习如果在适合的条件下,完全可以打败人类,逼近完美的极限。

强化学习非常像生物进化,模型在给定的环境中,不断地根据环境的惩罚和奖励(reward),拟合到一个最适应环境的状态。

ChatGPT的前世今生
NLP + 强化学习

强化学习之所以能比较容易地应用在围棋以及其它各种棋牌游戏里,原因就是因为对于 alpha Go 而言,环境就是围棋,围棋棋盘就是它的整个世界。

而几年前知乎上就有提问,NLP + 强化学习,可以做吗?怎么做呢?

ChatGPT的前世今生

底下回答一片唱衰,原因就是因为,NLP 所依赖的环境,是整个现实世界,整个世界的复杂度,远远不是一个19乘19的棋盘可以比拟的。无法设计反馈惩罚和奖励函数,即 reward 函数。除非人们一点点地人工反馈。

哎,open-ai 的 chatGPT 就把这事给干了。

不是需要人工标反馈和奖励吗?那就撒钱,找40个外包,标起来!

ChatGPT的前世今生

这种带人工操作的 reward,被称之为 RLHF(Reinforcement Learning from Human Feedback)

具体操作过程就是下图的样子,采用强化学习的方式来对模型进行训练。已经抛弃了传统的 LM 方式。

ChatGPT的前世今生

这里重点是第二部中,如何构建一个 reward 函数,具体就是让那40名外包人员不断地从模型的输出结果中筛选,哪些是好的,哪些是低质量的,这样就可以训练得到一个 reward 模型。

通过reward 模型来评价模型的输出结果好坏。

讲真,这个 reward 模型,《黑客帝国》的母体 matrix 既视感有木有??!!

ChatGPT的前世今生

只要把预训练模型接一根管子在 reward 模型上,预训练模型就会开始像感知真实世界那样,感知reward。

由此,我们就可以得到这个把全世界都震碎的高音!(误,模型)

chatGPT 功能一览

  • 能回答知乎上的问题ChatGPT的前世今生

  • 你别想耍它ChatGPT的前世今生

  • 能回答困难的问题ChatGPT的前世今生

  • 能理解乱序文本ChatGPT的前世今生

  • 会做高数ChatGPT的前世今生

  • 知道自己是程序,不会做你女票ChatGPT的前世今生

  • 还能处理程序 bug

ChatGPT的前世今生

六、影响

NLP 领域的影响

个人认为,NLP 领域的一些里程碑性的技术重要性排序如下:

chatGPT > word2vec > Bert (纯个人看法)

chatGPT 的关注度已经很大程度让人们感觉到,什么天猫精灵、小爱同学等等人工智障的时代似乎过去了。只要模型足够大,数据足够丰富,reward 模型经过了更多的人迭代和优化,完全可以创造一个无限逼近真实世界的超级 openai 大脑。

当然,chat GPT 依然是存在回答不好的情况的,比如会重复一些词句,无法分清楚事实等等。

而且,chatGPT 目前看,它是没有在推理阶段连接外部信息的。

ChatGPT的前世今生

模型知道自己的回答边界,知道自己只是一个没有情感的回答工具。那么,试想 openai 把外部信息也导入到 chatGPT 里。

另一些影响

我看到 chatGPT 居然可以写代码,还能帮我改代码,debug,作为程序员,我不禁深深陷入了沉思

据说,debug 程序员网站 stackoverflow,已经下场封杀 chatGPT 了。

ChatGPT的前世今生

当然,完全不仅仅是程序界。据说 GPT-4 正在做图文理解,那么,对于教师、医生、咨询师、等等等等,各行各业,是不是都是一个巨大的冲击?所谓专业领域的知识门槛,也将被模型一步踏平。到时候,可能人类真的要靠边站了,除了某些高精尖的行业精英。文章来源地址https://www.toymoban.com/news/detail-405705.html

到了这里,关于ChatGPT的前世今生的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • GPT的前世今生:从gpt1到chatgpt的能力提升

            从2017年google brain提出transformer模型,到2018年基于transformer模型open ai推出了gpt1模型以及google推出了bert模型,到2019-2021年open ai陆续推出gpt2和gpt3,再到2022-2023年推出chat-gpt和gpt4,大语言模型已经发展成了一个具有3个大分支的参天大树[LLM:大语言模型]。在这里主要写写

    2024年02月08日
    浏览(70)
  • ChatGPT的前世今生,到如今AI领域的竞争格局,本文带你一路回看!

      73年前,“机器思维”的概念第一次被计算机科学之父艾伦·图灵(Alan Turing)提出,从此,通过图灵测试成为了人类在AI领域为之奋斗的里程碑目标。 73年后的今天,在AI历经了数十年的不断进化、迭代后,目前为止仍旧没有任何一款AI从真正意义上的通过图灵测试。 而Ch

    2024年02月04日
    浏览(37)
  • 【区块链杂谈】区块链的前世今生(今生)

    在前面,我们回顾了区块链技术自诞生到野蛮生长的三个阶段,自某些不可抗因素主动干预之后,整个市场因为比特币价格的腰斩而萎靡不振,热衷于赚取热钱快钱的投机者逐渐退出,只留下了一片狼藉。 在这样的背景下, 区块链的发展逐渐由币价驱动转向技术驱动 ,投机

    2024年02月09日
    浏览(36)
  • OpenHarmony的前世今生

    目录 1.1.1:OpenHarmony的背景 1.1.2:OpenHarmony的诞生 1.1.3:OpenHarmony与HarmonyOS的关系 1.1.4:OpenHarmony的技术架构 1.1.5:OpenHarmony的技术特性 1.1.6:小结 OpenHarmony 是由开放原子开源基金会(OpenAtom Foundation)孵化及运营的开源项目,目标是面向全场景、全连接、全智能时代,基于开源

    2024年01月20日
    浏览(44)
  • InfiniBand 的前世今生

    今年,以 ChatGPT 为代表的 AI 大模型强势崛起,而 ChatGPT 所使用的网络,正是 InfiniBand,这也让 InfiniBand 大火了起来。那么,到底什么是 InfiniBand 呢?下面,我们就来带你深入了解 InfiniBand。 InfiniBand(也称为“无限带宽”,缩写为 IB)是一个用于高性能计算的计算机网络通信标

    2024年02月06日
    浏览(34)
  • 小程序插件的前世今生

    首先,在开始之前,我们需要了解小程序插件的概念。小程序插件可以理解为小程序的扩展功能,类似于应用商店中的插件。通过引入插件,我们可以给小程序添加一些特定的功能模块,例如地图、支付、分享等。这样一来,开发者就可以更加灵活地为用户提供丰富的体验。

    2024年02月03日
    浏览(44)
  • Main()函数的前世今生

             在开始分析程序之前,我们第一个要解决的问题,就是如何定位到 main函数,想要从二进制逆向的角度分析出main 函数,就必须要了解正向的代码下 main 函数的所有的细节和特 征。毕竟逆向的本质就是正向。 VS C++开发的程序在调试时总是从main或WinMain函数开始,这

    2024年02月09日
    浏览(42)
  • Docker 的前世今生

    🌷🍁 博主 libin9iOak带您 Go to New World.✨🍁 🦄 个人主页——libin9iOak的博客🎐 🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 🌊 《IDEA开发秘籍》学会IDEA常用操作,工作效率翻倍~💐 🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬

    2024年02月16日
    浏览(45)
  • powerpc架构的前世今生

    PowerPC架构是一种基于精简指令集计算机(RISC)的处理器架构。它最初由IBM、Motorola和Apple共同开发,旨在为个人电脑、工作站和服务器提供高性能和可扩展性。 PowerPC架构在1991年首次推出,后来成为苹果Macintosh电脑的主要处理器架构。它在苹果电脑上使用的时间从1994年持续到

    2024年02月10日
    浏览(40)
  • 1 Go的前世今生

    概述         Go语言正式发布于2009年11月,由Google主导开发。它是一种针对多处理器系统应用程序的编程语言,被设计成一种系统级语言,具有非常强大和有用的特性。Go语言的程序速度可以与C、C++相媲美,同时更加安全,支持并行进程。此外,Go语言也支持面向对象编程

    2024年02月08日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包