人体姿态识别方案详解

这篇具有很好参考价值的文章主要介绍了人体姿态识别方案详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

姿态迁移简介

目前AR,VR,元宇宙都比较火,需要实际场景和虚拟中进行交互的情况,因此研究了通过摄像头获取图像进行识别,本文主要概述了在人体身体姿势识别跟踪方面的一些调研和尝试。

通过各个方案,我们可以从RGB视频帧中推断出整个身体的关键特征点,从而根据这些关键特征点去做扩展,比如迁移到unity模型中等。

从识别角度来说,我们可以分成两个大方向,一是人体身体关键特征点识别,这里特征点分为2d特征点和3d特征点,部分方案只支持2d特征点;二是人体动作识别,比如用户在做什么动作,举一个很简单的例子,我们可以通过mediapipe识别出用户在做俯卧撑或者深蹲等。

从用户体验角度来说,我们可以分成实时摄像头传输和对视频进行处理两个方向。摄像头实时传输的话就必须要做到对视频每一帧RGB图像做到即时处理,这里就牵扯到优化效率问题。对视频进行处理的话可以采用对视频后期处理的形式去处理,一般动捕方案都是这么做的。

方案详解

Mediapipe

Google出品,可以实现人脸检测、姿态识别,手势识别等很多效果,并且可以在多平台高效的输出。这里强调下Mediapipe检测出来的特征点数据均为3d,有空间感。

Mediapipe检测是基于BlazeFace模型,明确地预测了两个额外的虚拟关键点,这些虚拟关键点将人体中心、旋转和缩放牢固地描述为一个圆圈。受莱昂纳多的维特鲁威人的启发,我们预测了一个人臀部的中点,外接整个人的圆的半径,以及连接肩部和臀部中点的线的倾斜角。
人体姿态识别方案详解

Mediapipe数据获取

从Mediapipe上获取的身体的33个特征点,具体如下图,对此33个特征点进行判断。
人体姿态识别方案详解
主要通过角度来判断:

float Angle(NormalizedLandmark ver1, NormalizedLandmark ver2, NormalizedLandmark ver3, NormalizedLandmark ver4)
{ 
	return Vector3.Angle(new Vector3(ver1.X, ver1.Y, ver1.Z) - new Vector3(ver2.X, ver2.Y, ver2.Z),
                new Vector3(ver3.X, ver3.Y, ver3.Z) - new Vector3(ver4.X, ver4.Y, ver4.Z));
}

多人姿态识别方向探索

Mediapipe 在人脸上是支持多人的,但是在姿态识别上目前只支持单人。在实验了网上能搜到的各种方案之后,有一种方案目前是可行的,但是在性能上会比较卡顿。
既然Mediapipe支持单人,那我们把视频画面中的多人画面拆分成多个单人就行了。
这里我采用的是OpenVINO中的行人检测模型。(我尝试了多种方案,YOLO-unity、Barracuda-Image-Classification和OpenVINO后发现OpenVINO效果最佳)OpenVINO ToolKit是英特尔发布的一套深度学习推断引擎,支持各种网络框架。对此不熟悉的同学可以参考OpenVINO开发系列文章汇总进行较为系统的学习。
人体姿态识别方案详解
具体思路就是通过OpenVINO识别出人物范围框,然后使用Opencv进行图像分割,单人图像传递给Mediapipe sdk去做单人姿态识别,然后进行汇总。目前该方案在移动端测试效果较为卡顿,不是很理想。

PoseNet

PoseNet是TensorFlow和谷歌创意实验室合作发布的专门用于姿态估计的一种技术方案。PoseNet可用于估计单个姿势或多个姿势,该算法有一个版本可以仅检测图像/视频中的一个人,另一个版本可以检测图像/视频中的多个人。
流程主要有两个阶段:

  1. 输入RGB 图像通过卷积神经网络馈送。
  2. 单姿势或多姿势解码算法用于解码来自模型输出的姿势、姿势置信度分数、关键点位置 和关键点置信度分数。

同Mediapipe一样,我们来看看PoseNet给到我们的关键姿势点。PoseNet提供了17个关键点,不同于Mediapipe提供的3d数据点,PoseNet提供的是关键点的2d坐标,x和y。以及关键点可信度分数,使用者可以根据实际情况去做判断,范围在0.0-1.0之间,越接近1.0表示识别出来的点越正确。
人体姿态识别方案详解
ok,我们来看下我把posenet这一套通过tf-lite加载的形式在unity上的呈现效果。
人体姿态识别方案详解

MoveNet

MoveNet是一种超快速且准确的模型,可检测身体的 17 个关键点。该模型在TF Hub上提供,有两种变体,称为 Lightning 和 Thunder。Lightning 适用于延迟关键的应用程序,而 Thunder 适用于需要高精度的应用程序。在大多数现代台式机、笔记本电脑和手机上,这两种模型的运行速度都比实时 (30+ FPS) 快,这对于现场健身、健康和保健应用至关重要。

我们可以看到movenet的识别出来的点的效果如下:
人体姿态识别方案详解
官方从tf hub 加载模型代码:

model_name = "movenet_lightning"

if "tflite" in model_name:
  if "movenet_lightning_f16" in model_name:
    !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/float16/4?lite-format=tflite
    input_size = 192
  elif "movenet_thunder_f16" in model_name:
    !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/float16/4?lite-format=tflite
    input_size = 256
  elif "movenet_lightning_int8" in model_name:
    !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/int8/4?lite-format=tflite
    input_size = 192
  elif "movenet_thunder_int8" in model_name:
    !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/int8/4?lite-format=tflite
    input_size = 256
  else:
    raise ValueError("Unsupported model name: %s" % model_name)

  # Initialize the TFLite interpreter
  interpreter = tf.lite.Interpreter(model_path="model.tflite")
  interpreter.allocate_tensors()

  def movenet(input_image):
    """Runs detection on an input image.

    Args:
      input_image: A [1, height, width, 3] tensor represents the input image
        pixels. Note that the height/width should already be resized and match the
        expected input resolution of the model before passing into this function.

    Returns:
      A [1, 1, 17, 3] float numpy array representing the predicted keypoint
      coordinates and scores.
    """
    # TF Lite format expects tensor type of uint8.
    input_image = tf.cast(input_image, dtype=tf.uint8)
    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()
    interpreter.set_tensor(input_details[0]['index'], input_image.numpy())
    # Invoke inference.
    interpreter.invoke()
    # Get the model prediction.
    keypoints_with_scores = interpreter.get_tensor(output_details[0]['index'])
    return keypoints_with_scores

else:
  if "movenet_lightning" in model_name:
    module = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4")
    input_size = 192
  elif "movenet_thunder" in model_name:
    module = hub.load("https://tfhub.dev/google/movenet/singlepose/thunder/4")
    input_size = 256
  else:
    raise ValueError("Unsupported model name: %s" % model_name)

  def movenet(input_image):
    """Runs detection on an input image.

    Args:
      input_image: A [1, height, width, 3] tensor represents the input image
        pixels. Note that the height/width should already be resized and match the
        expected input resolution of the model before passing into this function.

    Returns:
      A [1, 1, 17, 3] float numpy array representing the predicted keypoint
      coordinates and scores.
    """
    model = module.signatures['serving_default']

    # SavedModel format expects tensor type of int32.
    input_image = tf.cast(input_image, dtype=tf.int32)
    # Run model inference.
    outputs = model(input_image)
    # Output is a [1, 1, 17, 3] tensor.
    keypoints_with_scores = outputs['output_0'].numpy()
    return keypoints_with_scores

实际生产过程中,movenet主要通过tf-lite去加载计算,可以分为单人和多人。tf-hub地址如下:地址。测试发现,从帧率和效果上来说,movenet比mediapipe效果要好一点。
但是在unity使用中,我发现movenet的tf-lite模型在unity中遇到了unity barracuda插件转换的问题,单人的tf-lite可用,但是多人无法转换。已知是unity barracuda插件问题,已提交issues,但目前还没走通。

不熟悉unity barracuda的同学可以移步这里
主要用于在untiy中集成神经网络算法。

OpenPose

OpenPose是我在github上搜到的一个人体姿态识别的一个算法方案。
主要功能:

  1. 2D实时多人关键点检测:15、18 或25 关键点身体/足部关键点估计,包括6 个足部关键点。运行时不受检测到的人数的影响。2x21-keypoint 手部关键点估计。运行时间取决于检测到的人数。70个关键点人脸关键点估计。运行时间取决于检测到的人数。
  2. 3D实时单人关键点检测

其实可以理解成在效果产出和姿态识别角度来说,是mediapipe和posenet的综合体。

效果如下:
人体姿态识别方案详解

OpenMMD

OpenMMD是一个可以直接分析现成视频(各种MP4, AVI等视频格式),自动生成vmd动作文件的工具。
这个方案无法做到实时转换,即使你的输入源是摄像头的话,也必须录完以后生成动捕文件,然后再把动捕文件绑定到模型上才可以完成。
OpenMMD具体使用教程在b站上有一个大佬总结的很清楚了,但有一个问题,他只能绑定在mmd模型上,mmd模型在游戏里的通用性并不大,属于比较小范围的应用。尝试了几种模型之间互转的方案,Blender等,但无果,转换起来没那么简单。
这是我迁移后的效果,左边是mmd模型,成功跑通。

总结

以上五种方案,简单总结如下:
人体姿态识别方案详解

参考链接

  1. BlazeFace
  2. Mediapipe Pose
  3. PoseNet
  4. MoveNet
  5. OpenPose
  6. OpenMMD

个人微信公共账号已上线,欢迎关注:
人体姿态识别方案详解文章来源地址https://www.toymoban.com/news/detail-405930.html

到了这里,关于人体姿态识别方案详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习之基于Yolov5人体姿态摔倒识别分析报警系统(GUI界面)

    欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。   系统设计概述: 传感器采集:通过在场景中布置摄像头或红外传感器等设备,采集人体姿态数据,包括人体位置、姿态、运动轨迹等信息。 数据预处理:对采集到的数据进行预处理,包括图

    2024年02月05日
    浏览(45)
  • 3D人体姿态估计

    3D人体姿态估计是指通过算法对输入的图像或视频进行分析,推断出人体的三维姿态信息。该技术可以应用于许多领域,如虚拟现实、运动分析、人机交互等。 1. 算法原理: 3D人体姿态估计利用深度学习模型作为算法的核心,通过网络学习人体姿态的表示和映射关系。该算法

    2024年02月03日
    浏览(43)
  • 基于视频的人体姿态检测

    基于视频的人体姿态检测 设计目的和要求 1.根据已知要求分析视频监控中行人站立和躺卧姿态检测的处理流程,确定视频监中行人的检测设计的方法,画出流程图,编写实现程序,并进行调试,录制实验视频,验证检测方法的有效性,完成系统软件设计。 2.基本教学要求:每

    2024年01月24日
    浏览(51)
  • 人体姿态估计和手部姿态估计任务中神经网络的选择

    一、 人体姿态估计 任务适合使用 卷积神经网络(CNN) 来解决。         人体姿态估计任务的目标是从给定的图像或视频中推断出人体的关节位置和姿势。这是一个具有挑战性的计算机视觉任务,而CNN在处理图像数据方面表现出色。         使用CNN进行人体姿态估计

    2024年02月05日
    浏览(41)
  • 【姿态估计】MediaPipe部分solution(手势,人体姿态,面部动作)的用法

    Mediapipe介绍 MediaPipe是个基于图形的跨平台框架,用于构建多模式应用的机器学习管道。 MediaPipe可在移动设备,工作站和服务器上跨平台运行,并支持移动GPU加速。使用MediaPipe,可以将应用的机器学习管道构建为模块化组件的图形。 MediaPipe专为机器学习从业者而设计包括研究

    2024年02月01日
    浏览(85)
  • Python+OpenCV+OpenPose实现人体姿态估计(人体关键点检测)

    1、人体姿态估计简介 2、人体姿态估计数据集 3、OpenPose库 4、实现原理 5、实现神经网络 6、实现代码 人体姿态估计(Human Posture Estimation),是通过将图片中已检测到的人体关键点正确的联系起来,从而估计人体姿态。 人体关键点通常对应人体上有一定自由度的关节,比如颈、

    2024年02月04日
    浏览(46)
  • 基于matlab视频的人体姿态检测

    设计目的和要求 1.根据已知要求分析视频监控中行人站立和躺卧姿态检测的处理流程,确定视频监中行人的检测设计的方法,画出流程图,编写实现程序,并进行调试,录制实验视频,验证检测方法的基于MATLAB的人体姿态 设计原理 首先利用统计的方法得到背景模型,并实时

    2024年02月02日
    浏览(49)
  • CVPR2023新作:3D人体姿态估计

    Title: 3D Human Pose Estimation via Intuitive Physics Affiliation: Max Planck Institute for Intelligent Systems, Tübingen, Germany Authors: Shashank Tripathi, Lea Müller, Chun-Hao P. Huang, Omid Taheri, Michael J. Black, Dimitrios Tzionas Keywords: 3D human pose estimation, physics engine, intuitive-physics terms, pressure heatmap, stable configuration. Su

    2024年02月16日
    浏览(39)
  • Python Opencv实践 - 人体姿态检测

            本文仍然使用mediapipe做练手项目,封装一个PoseDetector类用作基础姿态检测类。         mediapipe中人体姿态检测的结果和手部跟踪检测的结果是类似的,都是输出一些定位点,各个定位点的id和对应人体的位置如下图所示:         关于mediapipe的pose解决方案类更详细

    2024年02月03日
    浏览(46)
  • 人体姿态检测 通过Opencv+Openpose实现

    通过一个偶然机会,我了解到了人体姿态解算,在学习K210之余,我便想着通过opencv实现这个功能,查找了很多资料,发现可以利用opencv+openpose实现,接着我又开始找一些资料,在pycharm上部署。 人体姿态估计的一个有趣应用是 CGI(computer graphic image,一种电影制造技术)应用

    2024年02月08日
    浏览(77)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包