线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

这篇具有很好参考价值的文章主要介绍了线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

最小二乘在直线拟合上的应用

在前一篇最小二乘的文章中:

线性代数 --- 投影与最小二乘 下(多元方程组的最小二乘解与向量在多维子空间上的投影)_松下J27的博客-CSDN博客多变量方程组的最小二乘,向量到多维子空间上的投影。https://blog.csdn.net/daduzimama/article/details/129559433?spm=1001.2014.3001.5501

我们知道了:1,正规方程, 2,计算最优解的方法,3,计算投影的方法

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

        在这篇文章中,我会从最小二乘在拟合直线上的应用开始,先是用实例来说明最小二乘的实际应用。紧接着,我会从这个例子出发,循序渐进的引出为什么我们希望A的列向量不仅仅是相互独立的,更希望他们是相互正交的。从而导出,如何令A的列向量彼此正交,这就是著名的Gram-Schmidt正交化。(需要再次重申的是,学习不是为了考试,不是为了背公式,更不需要题海战术,而是“知其(Gram-Schmidt)然,知其(Gram-Schmidt)所以然”)


拟合直线

        拟合直线可以说是最小二乘最好的应用之一。简而言之,就是用m>2个点(也可以说是m个观测点,及其所对应的m个数据)去拟合一条直线。

        对某个实验而言,如果他的实验结果是线性的,且没有任何实验误差,则两次实验的结果就能确定一条符合这一实验规律的直线b=C+Dt,而且后续所有的实验结果都应当落在这条直线上。假定现有m个实验结果,他们在横坐标上的值为,,...,,他们在纵坐标中所对应的值分别是,,...,。现在我们用方程=C+D表示一条穿过这些点的直线,得到如下方程组:

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

        如果m个实验结果都没有误差,则,上述方程组有解,且有唯一解C,D。但,如果实验结果有误差,则不可能找到一个完美的C,D,让这条直线穿过所有的点。这是一个(overdetermined system)超定方程组,m>2个方程,2个未知数,方程组无解。用矩阵来表示为:

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

        因实验结果的误差导致方程组无解,因此,我们只能找一条尽可能贴近所有点的直线。对于矩阵A而言,他有两个列向量,方程组无解,所以无法通过线性组合得到等式右端的列向量。在维持A的两个列向量不变的情况下,我们通过新的线性组合,,在A的列空间中找到了最接近向量b的向量p,即,b在A的列空间C(A)上的投影。

        同时,也最小化了每个点与直线之间的纵向误差,即,最小化线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化。其中,。(但这不是我推崇的思维,应该优先考虑用投影的角度思考!)

方程左右两边同时乘以,得到“正规方程(Normal Equation)”:

(或,其中P为投影矩阵)

其中等式左边等于:

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

 等式右边等于:

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

最终得到:

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化


 Example 1:

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

 如图(a),在一个实验中的不同时刻t1,t2,t3下,得到三组测量值b1,b3,b3,分别是(注意,他们并不是等间隔的):

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

 对应的方程组为:

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

        方程组无解,因为这三点不在一条直线上。通过求解最小二乘方程组,联立正规方程。

                                

左边:

右边:

得到:

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

 最终得到最优解为,,。 

 

对应的最佳拟合直线为:

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

投影p为:

        现在我们结合下图(b),从投影的角度来回顾一下这个问题。 向量b无法通过矩阵A的两个列向量[1,1,1]和[-1,1,2]通过线性组合得到,因为,b不在A的列空间内。通过把向量b投影到A的列空间上,在A的列空间上找到了一个离向量b最近的向量p,这个投影向量p可以通过A的两个列向量的线性组合得到,线性组合的权重为 , 。

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

 Attention:

        现在,我们已经得到了最优拟合的直线方程f(t)=9/7+4/7t,我们把t=(-1, 1, 2)时在直线上所对应的点求出来,看看有什么神奇的事发生!

当t=-1时,f(t=-1)=9/7-4/7=5/7,当t=1时,f(t=1)=9/7+4/7=13/7,当t=2时,f(t=2)=9/7+8/7=17/7。然后把这些点绘制到图(a)上,并且把图(a)和图(b)放在一起看。

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

        接下来我们会看到,这两幅图以不同的艺术形式描述了同一个数学问题, 且, 他们是密切相关的

关联1:投影向量p

        最开始,我们在图(a)中,描绘了三个不在同一直线上的数据点(t1=-1,b1=1),(t2=1,b2=1),(t3=2,b3=3)。然后,我们用投影的方式/求解正规方程的方式求得了最小二乘解,同时也求出了向量b在A的列空间C(A)上的投影向量p=[5/7, 13/7, 17/7],这些都体现在了图(b)中。最后,我们根据最优拟合直线的函数,算出了t=(t1,t2,t3)时在直线上所对应的数据点(t1=-1,p1=5/7),(t2=1,p2=13/7),(t3=2,p3=17/7),并绘制到图(a)中。

        可见,投影向量p中三个元素的值,正好是拟合直线上t所对应的点。对于图(b)而言,用线性代数的语言说,是把b拉到了子空间C(A)上。对于图(a)而言,通过最小化每个点到最优拟合直线上的距离e1,e2,e3,把本不在同一直线上的三个点b1,b2,b3拉到了同一条直线上。且p1,p2,p3正好等于投影向量p中元素的值。

        换句话说,“把b投影到A的列空间上”和“把三个原始数据点(t1,b1),(t2,b2),(t3,b3)移到了同一条直线上”,这两个概念是等同的。

关联2:误差向量e

向量b减去投影向量p,就能得到误差向量e(他垂直于C(A)):

向量e中的每个元素值的含义是什么? 实际上就是图(a)中,每个b与p之间的误差

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化


(全文完)

作者 --- 松下J27

参考文献(鸣谢)

1,线性代数及其应用,侯自新,南开大学出版社,1990.

2,Linear Algebra and Its Applications(Fourth Edition) - Gilbert Strang(文中大部分插图来自于这本书)

3,Introduction to Linear Algebra,Fifth Edition - Gilbert Strang

格言摘抄:

        吾尝终日而思矣,不如须臾之所学也;吾尝跂而望矣,不如登高之博见也。---《劝学》

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化

(配图与本文无关)

版权声明:文中的部分图片,文字或者其他素材,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27文章来源地址https://www.toymoban.com/news/detail-406077.html

到了这里,关于线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Open3D点云数据处理(十九):最小二乘直线拟合(矩阵方程法)

    专栏目录:Open3D点云数据处理(Python) 最小二乘直线拟合是一种常用的数据拟合方法,它的目标是找到一条直线,使得该直线和样本数据之间的误差平方和最小。从矩阵方程的角度来看,最小二乘直线拟合可以看作是求解一个超定线性方程组的问题。 具体来说,我们假设有

    2024年02月13日
    浏览(45)
  • 非线性最小二乘

    在经典最小二乘法估计中,假定被解释变量的条件期望是关于参数的线性函数,例如 E ( y ∣ x ) = a + b x E(y|x) = a+bx E ( y ∣ x ) = a + b x 其中 a , b a,b a , b 为待估参数, E ( y ∣ x ) E(y|x) E ( y ∣ x ) 是关于参数 a , b a,b a , b 的线性函数。但 E ( y ∣ x ) E(y|x) E ( y ∣ x ) 是关于参数的非线

    2024年02月04日
    浏览(57)
  • 线性代数的学习和整理2:什么是线性,线性相关,线性无关 以及什么是线性代数?

    目录 1 写在前面的话 1.1 为什么要先总结一些EXCEL计算矩阵的工具性知识, 而不是一开始就从基础学起呢?  1.2 关于线性代数入门时的各种灵魂发问: 1.3 学习资料 2 什么是线性(关系)? 2.1 线性的到底是一种什么关系: 线性关系=正比例/正相关关系 ≠ 直线型关系 2.2 一次函数

    2024年02月10日
    浏览(53)
  • 线性代数的学习和整理2:什么是线性,线性相关,线性无关 及 什么是线性代数?

    目录 1 写在前面的话 1.1 为什么要先总结一些EXCEL计算矩阵的工具性知识, 而不是一开始就从基础学起呢?  1.2 关于线性代数入门时的各种灵魂发问: 1.3 学习资料 2 什么是线性(关系)? 2.1 线性的到底是一种什么关系: 线性关系=正比例/正相关关系 ≠ 直线型关系 2.2 一次函数

    2024年02月11日
    浏览(135)
  • 最小二乘问题和非线性优化

    转载自此处,修正了一点小错误。 在求解 SLAM 中的最优状态估计问题时,我们一般会得到两个变量,一个是由传感器获得的实际观测值 z boldsymbol{z} z ,一个是根据目前估计的状态量和观测模型计算出来的预测值 h ( x ) h(boldsymbol{x}) h ( x ) 。求解最优状态估计问题时通常我们

    2024年02月13日
    浏览(37)
  • 线性代数思维导图--线性代数中的线性方程组(1)

    1.解线性方程组 2.线性方程组解的情况 3.线性方程组的两个基本问题 1.阶梯型矩阵性质 2.简化阶梯型矩阵(具有唯一性) 3.行化简算法 4.线性方程组的解 1.R^2中的向量 2.R^2中的几何表示 3.R^n中的向量 4.线性组合与向量方程 5.span{v},span{u,v}的几何解释 1.定义 2.定理 3.解的存在性

    2024年02月02日
    浏览(87)
  • 【线性代数及其应用 —— 第一章 线性代数中的线性方程组】-1.线性方程组

    所有笔记请看: 博客学习目录_Howe_xixi的博客-CSDN博客 https://blog.csdn.net/weixin_44362628/article/details/126020573?spm=1001.2014.3001.5502 思维导图如下:  内容笔记如下:

    2024年02月06日
    浏览(62)
  • 线性代数的学习和整理15:线性代数的快速方法

       5  空间的同构 下面再谈谈同构。线性空间千千万,应如何研究呢?同构就是这样一个强大的概念,任何维数相同的线性空间之间是同构的,空间的维数是简单而深刻的,简单的自然数居然能够刻画空间最本质的性质。借助于同构,要研究任意一个n维线性空间,只要研究

    2024年02月11日
    浏览(57)
  • 线性代数 4 every one(线性代数学习资源分享)

            版权说明,以下我分享的都是一个名叫Kenji Hiranabe的日本学者,在github上分享的,关于Gilbert Strang教授所撰写的《Linear Algebra for Everyone》一书的总结,更像是一个非常精美的线性代数手册,欢迎大家下载收藏。如果我的的这篇分享文章中涉嫌侵犯版权,我会立即删

    2024年02月15日
    浏览(49)
  • 线性代数的学习和整理9:线性代数的本质(未完成)

    目录 1 相关英语词汇 1.1 元素 1.2 计算 1.3 特征 1.4 线性相关 1.5 各种矩阵 1.6 相关概念 2 可参考经典线性代数文档 2.1 学习资料 2.2 各种文章和视频 2.3 各种书 2.4 下图是网上找的思维导图 3 线性代数的本质 3.1 线性代数是第2代数学模型 一般的看法 大牛总结说法: 3.2   线性代

    2024年02月09日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包