机器学习中的数学原理——精确率与召回率

这篇具有很好参考价值的文章主要介绍了机器学习中的数学原理——精确率与召回率。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在Yolov5训练完之后会有很多图片,它们的具体含义是什么呢?
机器学习中的数学原理——精确率与召回率
通过这篇博客,你将清晰的明白什么是精确率、召回率。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下《 白话机器学习中的数学——精确率与召回率》**

一、计算公式

1. 精确率
机器学习中的数学原理——精确率与召回率
2.召回率
机器学习中的数学原理——精确率与召回率
3. F值
机器学习中的数学原理——精确率与召回率

二、详细分析

2.1精确率

在上一篇文章中,我们已经知道了精度的计算公式:
机器学习中的数学原理——精确率与召回率
一般来说,只要计算出这个 Accuracy 值,基本上就可以掌握分类结果整体的精度了。但是有时候只看这个结果会有问题,所以还有别的指标。 比如下面这个例子:
假设图中的圆点是 Positive 数据、叉号是Negative 数据,我们来考虑一下数据量极其不平衡的情况。
机器学习中的数学原理——精确率与召回率
假设有 100 个数据,其中 95 个是 Negative。那么,哪怕出现模型把数据全部分类为 Negative 的极端情况,Accuracy 值也为 0.95,也就是说模型的精度是 95%。但是不管精度多高,一个把所有数据都分类为 Negative 的模型,不能说它是好模型吧?遇到这种情况,只看整体的精度看不出来问题。
所以要引入别的指标。这些指标稍微有点复杂,结合具体的数据来看更好理解,所以我们用这个例子来说明吧:
机器学习中的数学原理——精确率与召回率
机器学习中的数学原理——精确率与召回率
这个例子看上去对 Positive 数据分类得不够好。首先我们来看第一个指标——精确率。它的英文是 Precision
机器学习中的数学原理——精确率与召回率
这个指标只关注 TP 和 FP。根据表达式来看,它的含义是在被分类为 Positive 的数据中,实际就是 Positive 的数据所占的比例。代入数值来计算看看。
机器学习中的数学原理——精确率与召回率
这个值越高,说明分类错误越少。 拿这个例子来说,虽然被分类为 Positive 的数据有 3 个,但其中只有 1 个是分类正确的。所以计算得出的精确率很低。

2.2召回率

还有一个指标是召回率,英文是 Recall
机器学习中的数学原理——精确率与召回率
把精确率分母上的 FP 换成 FN 就是它了。这个指标只关注 TP 和 FN。根据表达式来看,它的含义是在Positive 数据中,实际被分类为 Positive 的数据所占的比例:
机器学习中的数学原理——精确率与召回率
我们运用公式可以计算出来当前的召回率:
机器学习中的数学原理——精确率与召回率
这个值越高,说明被正确分类的数据越多。 拿这个例子来说,虽然 Positive 数据共有 5 个,但只有 1 个被分类为 Positive。所以计算得出的召回率也很低。
基于这两个指标来考虑精度是比较好的。 精确率和召回率都很高的模型就认为是一个好模型,但是在实际情况下,精确率和召回率会一个高一个低,需要我们取舍文章来源地址https://www.toymoban.com/news/detail-406529.html

到了这里,关于机器学习中的数学原理——精确率与召回率的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习中的数学原理——对数似然函数

    这个专栏主要是用来分享一下我在 机器学习中的 学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎 私信或者评论区留言!这一篇就更新一下《 白话机器学习中的数学——对数似然函数》! 目录 一、什么是对数似然函数 二、算法分析 三、总结  对

    2024年04月10日
    浏览(37)
  • NLP NER 任务中的精确度(Precision)、召回率(Recall)和F1值

    在自然语言处理(NLP)中的命名实体识别(NER)任务中,精确度(Precision)、召回率(Recall)和F1值是评估模型性能的关键指标。这些指标帮助我们了解模型在识别正确实体方面的效率和准确性。 精确度(Precision) : 精确度是指模型正确识别的命名实体数与模型总共识别出

    2024年01月23日
    浏览(54)
  • 【机器学习】二分类问题中的混淆矩阵、准确率、召回率等 (Python代码实现)

    混淆矩阵(Confusion Matrix):将分类问题按照真实情况与判别情况两个维度进行归类的一个矩阵,如在二分类问题中就是一个2*2的矩阵: TP(True Positive):表示实际为真预测为真 FP(False Positive):表示实际为假预测为真 (误报) TN(True Negative):表示实际为假预测为假 FN(False N

    2024年01月24日
    浏览(44)
  • 目标检测扩(六)一篇文章彻底搞懂目标检测算法中的评估指标计算方法(IoU(交并比)、Precision(精确度)、Recall(召回率)、AP(平均正确率)、mAP(平均类别AP) )

    ​ 基本在目标检测算法中会碰到一些评估指标、常见的指标参数有:IoU(交并比)、Precision(精确度)、Recall(召回率)、AP(平均正确率)、mAP(平均类别AP)等。这些评估指标是在评估阶段评价训练的网络好坏的重要依据。 计算方法 IoU: 用来评价目标检测算法的对象定

    2024年04月13日
    浏览(46)
  • 机器学习|DBSCAN 算法的数学原理及代码解析

    聚类是机器学习领域中一项重要的任务,它可以将数据集中相似的样本归为一类。 DBSCAN(Density-Based Spatial Clustering of Applications with Noise) 是一种是一种经典的密度聚类算法,它能够有效地发现任意形状的聚类簇,并且可以识别出噪声点。在本文中,我们将深入探讨 DBSCAN 算法

    2024年02月11日
    浏览(47)
  • 准确率、精确率、召回率、F1-score

    TP(True Positives):真正例,即正例预测为真(预测为正例而且实际上也是正例); FP(False Positives):假正例,即负例预测为真(预测为正例然而实际上却是负例); FN(false Negatives):假负例,即正例预测为假(预测为负例然而实际上却是正例); TN(True Negatives):真负例,即

    2024年02月03日
    浏览(45)
  • 混淆矩阵、精确率、召回率和F1值:如何评估分类器的性能?

    ❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈 (封面图由文心一格生成) 在机器学习中,分类是一项非常重要的任务。在

    2024年02月02日
    浏览(59)
  • 机器学习32:《推荐系统-V》再谈召回、打分和重排

    在《推荐系统(一)概述》一文中,笔者概述了推荐系统的基本术语和一般架构,通过【推荐系统 I~IV】系列课程的学习,相信读者对推荐系统已经有了一定的理解。本节,我们再来回顾一下推荐系统的核心环节——召回、打分、重排。 目录 1.召回-Retrieval 1.1 大规模检索

    2024年02月17日
    浏览(45)
  • 目标检测 YOLOv5 - 如何提高模型的指标,提高精确率,召回率,mAP等

    flyfish 文中包括了YOLOv5作者分享的提高模型指标小技巧和吴恩达(Andrew Ng)在做缺陷检测项目( steel sheets for defects)时遇到的需要提高模型指标的问题是如何解决的。 大多数情况下,只要数据集足够大且良好标注(provided your dataset is sufficiently large and well labelled),就可以在不更

    2024年02月05日
    浏览(64)
  • 机器学习中的数学——学习曲线如何区别欠拟合与过拟合

    通过这篇博客,你将清晰的明白什么是 如何区别欠拟合与过拟合 。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下 《 白话

    2023年04月19日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包