Handler原理
当使用handler
去发送一个消息的时候,查看调用栈,发现最终会调用到MessageQueue.equeueMessage
,那么说既然是个queue
肯定就有增和删,equeueMessage
就对应它的增,再看看是谁在调用MessageQueue
。
不妨猜想一下,既然平常写这个handler
都在主线程,而且主线程的入口就在main
,main
方法中肯定有关于MessageQueue
使用者的信息,而且大概率可能是一个生产者消费者模式,有人不断放message
,有人不断拿message
,那么我们去看看他的main
方法。
一个App从哪开始执行
每个app
都有自己的虚拟机,每个虚拟机都会去执行自己的main
方法,
为什么每个app要有自己的虚拟机呢
主要是起到隔离的作用,一个app的生死并不会影响其他app或者系统
当我们在点击桌面的某个app
时
ancher(app)->zygote->jvm->ActivityThread.main()
进入main方法,到底谁再用是怎么工作的
通过排查发现Looper
类中有一个MessageQueue
,所以确定是Looper
在使用这个queue
Looper的创建和启动
public static void main(String[] args) {
//省略
//创建Looper
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false, startSeq);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
//启动loop
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
Looper的创建
Looper.prepareMainLooper();
public static void prepareMainLooper() {
//准备创建Looper
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
prepare(false);
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
//static final ThreadLocal<looper> sThreadLocal = new ThreadLocal<looper>();
//ActivityThread通过ThreadLocal这种方式获取Looper
//创建Looper,往sThreadLocal放了一个Looper
sThreadLocal.set(new Looper(quitAllowed));
}
Looper构造方法
private Looper(boolean quitAllowed) {
//创建一个消息队列
mQueue = new MessageQueue(quitAllowed);
//得到当前线程
mThread = Thread.currentThread();
}
看一下传入的quitAllowed
这个参数的作用
我们进入MessageQueue
构造方法,再看quit
方法
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed;
mPtr = nativeInit();
}
//调用quit方法可以终止loop
void quit(boolean safe) {
//如果是true,这个if就会命中,抛出异常,使得quit不能被调用
if (!mQuitAllowed) {
throw new IllegalStateException("Main thread not allowed to quit.");
}
//省略
}
Looper
的创建时通过ThreadLocal
来创建的,所以说在一个线程中肯定只有一个Looper
,而且Looper
在构造方法中创建的MessageQueue
所以一个Looper
持有一个MessageQueue
Looper启动
public static void loop() {
final Looper me = myLooper();//return sThreadLocal.get();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
if (me.mInLoop) {
Slog.w(TAG, "Loop again would have the queued messages be executed"
+ " before this one completed.");
}
me.mInLoop = true;
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g.
// adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
final int thresholdOverride =
SystemProperties.getInt("log.looper."
+ Process.myUid() + "."
+ Thread.currentThread().getName()
+ ".slow", 0);
boolean slowDeliveryDetected = false;
for (;;) {
//拿取message
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
try {
//省略
//分发msg,处理msg
msg.target.dispatchMessage(msg);
if (observer != null) {
observer.messageDispatched(token, msg);
}
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} catch (Exception exception) {
if (observer != null) {
observer.dispatchingThrewException(token, msg, exception);
}
throw exception;
} finally {
ThreadLocalWorkSource.restore(origWorkSource);
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
//省略
//重置msg,把其内部的属性初始化,添加进message池
msg.recycleUnchecked();
}
}
取到消息后为何message知道执行哪个handler
msg.target.dispatchMessage(msg); Message的target什么时候被初始化(默认情况)
当我们调用sendMessage
后发生了什么
//1
public final boolean sendMessage(@NonNull Message msg) {
return sendMessageDelayed(msg, 0);
}
//2
public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
//3
public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
//在哪个线程操作就获取哪个线程的MessageQueue其根本原因是ThreadLocl保证了其唯一
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
//4
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
long uptimeMillis) {
//赋值
msg.target = this;
msg.workSourceUid = ThreadLocalWorkSource.getUid();
if (mAsynchronous) {
msg.setAsynchronous(true);
}
//插队
return queue.enqueueMessage(msg, uptimeMillis);
}
最终我们找到了这个msg.target
,所以说你用哪个handler
调用的sendMessage
就给target
赋值成哪个,如果想灵活使用,推荐调用setTarget(Handler target)
再调用Message的sendToTarget()
public void setTarget(Handler target) {
this.target = target;
}
public void sendToTarget() {
target.sendMessage(this);
}
现在我们就知道是哪个handler要调用dispatchMessage(msg),进入dispatchMessage(msg)
public void dispatchMessage(@NonNull Message msg) {
//默认不设置的话为空
if (msg.callback != null) {
handleCallback(msg);
} else {
//默认不设置的话为空
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
//最终回调到了handleMessage
handleMessage(msg);
}
}
MessageQueue的工作原理
MessageQueue的特点
MessageQueue
单链表实现的优先级队列
增操作
根据when
优先,插入排序
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
synchronized (this) {
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
//插入排序
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
取操作
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
//等待
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
//取到消息并和当前时间对比
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
//计算等待时间
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
//省略
}
}
唤醒和阻塞
MessageQueue
是一个容器,结合2.2.2,不处理Message
有两种情况,而且都会调用nativePollOnce(long ptr, int timeoutMillis)
阻塞
/*ptr 线程的id信息 timeoutMillis 等待时间*/
private native void nativePollOnce(long ptr, int timeoutMillis);
1.Message没有到执行时间
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
//计算等待时间
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
}
timeoutMillis
不为-1时,到达等待时间后自动唤醒
2.MessageQueue为空 msg为空
if (msg != null) {
//省略
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
timeoutMillis
为-1,此时不会自动唤醒,需要我们调用增操作进行唤醒,增操作会判断是否需要唤醒
if (needWake) {
nativeWake(mPtr);
}
private native static void nativeWake(long ptr);
3.底层的nativePollOnce(long ptr, int timeoutMillis)和nativeWake(long ptr)
4.子线程无Message一定要调用quit(boolean safe)
quit(boolean safe) -> nativeWake(mPtr) -> next().if (mQuitting) { return null;} -> loop().if (msg == null) {return; }结束死循环
Message的创建
Message
是一个链表的节点结构,有next
属性,每一个Message
在使用后都不会去销毁这个Message
,而是调用 msg.recycleUnchecked();
回收掉msg
,会链在复用链上。
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = UID_NONE;
workSourceUid = UID_NONE;
when = 0;
target = null;
callback = null;
data = null;
//插入复用链表
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
1.new Message()申请内存,最简单粗暴的方法区
使用new
,不断的去new
会导致内存抖动
2.调用obtain
Message
内部会维护一个重置后的链节点头,通过这个节点来获取重置后的Message
进行复用,避免了重复申请内存
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
handler的内存泄漏问题
普通的内部类,在使用时会持有外部引用,并不是说持有外部引用就一定会导致内存泄漏,对象的回收最终是根据GC根可达算法来判断的
如果说一个Message
的执行时间特别长,我们根据2.4.1.4可以知道,message.target
就是我们的handler
,此时的引用链为
message->handler->activity导致activity
不能被回收,造成内存泄漏
方法一:通过程序逻辑来进行保护。
1.在关闭Activity
的时候停掉你的后台线程。线程停掉了,就相当于切断了Handler
和外部连接的线,Activity
自然会在合适的时候被回收。
2.如果你的Handler
是被delay
的Message
持有了引用,那么使用相应的Handler
的removeCallbacks()
方法,把消息对象从消息队列移除就行了。
方法二:将Handler声明为静态类。
在创建Handler
时让其持有一个Activity
的弱引用,当GC
时弱引用是一定会被回收的
static class MyHandler extends Handler {
WeakReference<activity> mActivityReference;
MyHandler(Activity activity) {
mActivityReference= new WeakReference<activity>(activity);
}
@Override
public void handleMessage(Message msg) {
final Activity activity = mActivityReference.get();
if (activity != null) {
//操作//
}
}
}
handler的同步屏障机制
MessageQueue
中可能说又必须要立即处理的任务,这时候MessageQueue
是怎么拿取异步任务的呢
首先往MessageQueue
中插入一个Target
为null
的Message
,就相当于告诉MessageQueue
我现在队列里有异步消息,你需要去执行异步消息,那么MessageQueue
在next
的时候就知道我现在要找异步消息去执行,
//取操作时对标志位的判断,这么看的话就是说如果target为null就相当于有同步消息要处理
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
//获取异步任务
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
//发送屏障消息往队列头插入标志位
private int postSyncBarrier(long when) {
// Enqueue a new sync barrier token.
// We don't need to wake the queue because the purpose of a barrier is to stall it.
synchronized (this) {
final int token = mNextBarrierToken++;
final Message msg = Message.obtain();
//并没有对target赋值
msg.markInUse();
msg.when = when;
msg.arg1 = token;
Message prev = null;
Message p = mMessages;
//插入标志位
if (when != 0) {
while (p != null && p.when <= when) {
prev = p;
p = p.next;
}
}
if (prev != null) { // invariant: p == prev.next
msg.next = p;
prev.next = msg;
} else {
msg.next = p;
mMessages = msg;
}
return token;
}
}
//移除屏障消息
public void removeSyncBarrier(int token) {
// Remove a sync barrier token from the queue.
// If the queue is no longer stalled by a barrier then wake it.
synchronized (this) {
Message prev = null;
Message p = mMessages;
while (p != null && (p.target != null || p.arg1 != token)) {
prev = p;
p = p.next;
}
if (p == null) {
throw new IllegalStateException("The specified message queue synchronization "
+ " barrier token has not been posted or has already been removed.");
}
final boolean needWake;
if (prev != null) {
prev.next = p.next;
needWake = false;
} else {
mMessages = p.next;
needWake = mMessages == null || mMessages.target != null;
}
p.recycleUnchecked();
// If the loop is quitting then it is already awake.
// We can assume mPtr != 0 when mQuitting is false.
if (needWake && !mQuitting) {
nativeWake(mPtr);
}
}
}
我们设置异步消息通过调用Message
的setAsynchronous(boolean async)
public void setAsynchronous(boolean async) {
if (async) {
flags |= FLAG_ASYNCHRONOUS;
} else {
flags &= ~FLAG_ASYNCHRONOUS;
}
}
子线程中使用Looper
使用HandlerThread
,它直接给我们封装好了Looper
的初始化和获取
//run中初始化Loop
public void run() {
mTid = Process.myTid();
Looper.prepare();
synchronized (this) {
mLooper = Looper.myLooper();
//初始化完毕,唤醒线程
notifyAll();
}
Process.setThreadPriority(mPriority);
onLooperPrepared();
Looper.loop();
mTid = -1;
}
//获取Loop
public Looper getLooper() {
if (!isAlive()) {
return null;
}
boolean wasInterrupted = false;
// If the thread has been started, wait until the looper has been created.
synchronized (this) {
//如果没有初始化好,阻塞
while (isAlive() && mLooper == null) {
try {
wait();
} catch (InterruptedException e) {
wasInterrupted = true;
}
}
}
/*
* We may need to restore the thread's interrupted flag, because it may
* have been cleared above since we eat InterruptedExceptions
*/
if (wasInterrupted) {
Thread.currentThread().interrupt();
}
return mLooper;
}
加锁解决的什么问题呢,如果说不加锁情况调用了getLooper()
,run()
又没有执行到给Loop
初始化,那不就是空指针了吗。
IntentService中对HandlerThread的使用
IntentService
内部有一个HandlerThread
,能够保证任务按部就班的在一个线程上运行,这种按部就班的运行其实就是对线程的控制
IntentService
怎么实现的处理异步请求呢
public abstract class IntentService extends Service {
private volatile Looper mServiceLooper;
@UnsupportedAppUsage
private volatile ServiceHandler mServiceHandler;
private String mName;
private boolean mRedelivery;
//handler
private final class ServiceHandler extends Handler {
public ServiceHandler(Looper looper) {
super(looper);
}
@Override
public void handleMessage(Message msg) {
//回调我们重写的方法
onHandleIntent((Intent)msg.obj);
//杀死IntentService,自杀通过启动id(所以说执行完就死,没有内存泄漏)
stopSelf(msg.arg1);
}
}
public IntentService(String name) {
super();
mName = name;
}
public void setIntentRedelivery(boolean enabled) {
mRedelivery = enabled;
}
@Override
public void onCreate() {
super.onCreate();
//创建一个 HandlerThread
HandlerThread thread = new HandlerThread("IntentService[" + mName + "]");
//启动线程
thread.start();
//获取Looper
mServiceLooper = thread.getLooper();
//绑定Looper
mServiceHandler = new ServiceHandler(mServiceLooper);
}
@Override
public void onStart(@Nullable Intent intent, int startId) {
//获取一个Message
Message msg = mServiceHandler.obtainMessage();
msg.arg1 = startId;
//给msg初始化属性
msg.obj = intent;
//发送消息最终回调到上面的ServiceHandler,从而回调到onHandleIntent()
mServiceHandler.sendMessage(msg);
}
@Override
public int onStartCommand(@Nullable Intent intent, int flags, int startId) {
//启动服务会调用onStartCommand()从而调用onStart()
onStart(intent, startId);
return mRedelivery ? START_REDELIVER_INTENT : START_NOT_STICKY;
}
@Override
public void onDestroy() {
//结束Loop
mServiceLooper.quit();
}
@Override
@Nullable
public IBinder onBind(Intent intent) {
return null;
}
//具体的逻辑,需要我们继承实现
@WorkerThread
protected abstract void onHandleIntent(@Nullable Intent intent);
}
到这本篇文章就结束了文章来源:https://www.toymoban.com/news/detail-406624.html
✨ 原 创 不 易 , 还 希 望 各 位 大 佬 支 持 一 下 \textcolor{blue}{原创不易,还希望各位大佬支持一下} 原创不易,还希望各位大佬支持一下
👍 点 赞 , 你 的 认 可 是 我 创 作 的 动 力 ! \textcolor{green}{点赞,你的认可是我创作的动力!} 点赞,你的认可是我创作的动力!
⭐️ 收 藏 , 你 的 青 睐 是 我 努 力 的 方 向 ! \textcolor{green}{收藏,你的青睐是我努力的方向!} 收藏,你的青睐是我努力的方向!
✏️ 评 论 , 你 的 意 见 是 我 进 步 的 财 富 ! \textcolor{green}{评论,你的意见是我进步的财富!} 评论,你的意见是我进步的财富!
文章来源地址https://www.toymoban.com/news/detail-406624.html
到了这里,关于安卓架构核心Handler原理解析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!