1 结构体
1.1 结构的基础知识
结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。
1.2结构的声明
struct tag
{
member-list;
}variable-list;
例如描述一个学生:
#include <stdio.h>
struct Stu
{
char name[20];//名字
int age;//年龄
char sex[5];//性别
char id[20];//学号
}; //分号不能丢
int main()
{
struct Stu;
return 0;
}
也可以写成下面这样:
struct Stu
{
//成员变量
char name[20];
int age;
float weight;
} s4, s5, s6;//全局变量(此处可加变量可不加)
int main()
{
struct Stu s1;//局部变量
struct Stu s2;
struct Stu s3;
return 0;
}
1.3 特殊的声明
在声明结构的时候,可以不完全的声明。
比如:
//匿名结构体类型
struct
{
int a;
char b;
float c;
}x;//(必须加名字才能用)
struct
{
int a;
char b;
float c;
}a[20], * p;
上面的两个结构在声明的时候省略掉了结构体标签(tag)。
那么问题来了?
在上面代码的基础上,下面的代码合法吗?
p = &x;
警告:
编译器会把上面的两个声明当成完全不同的两个类型。
所以是非法的。
匿名结构体只能用一次,是不够方便的
1.4 结构的自引用
数据的存储结构
在结构中包含一个类型为该结构本身的成员是否可以呢?
//代码1
struct Node
{
int data;
struct Node next;
};
//可行否?
答:不可行
正确的自引用方式:
//代码2
struct Node
{
int data;
struct Node* next;
};
注意:
//代码3
typedef struct
{
int data;
Node* next;
}Node;
//这样写代码,可行否?
//答:不行
//解决方案:
typedef struct Node
{
int data;
struct Node* next;
}Node;//对匿名结构体重命名时的Node是结构体类型而不是变量
1.5 结构体变量的定义和初始化
有了结构体类型,那如何定义变量,其实很简单。
struct S
{
int x;
int y;
}p1; //声明类型的同时定义变量p1
struct S p2; //定义结构体变量p2
//初始化:定义变量的同时赋初值。
struct S p3 = { 100,'q' };
struct Stu //类型声明
{
char name[15];//名字
int age; //年龄
};
struct Stu s = { "zhangsan", 20 };//初始化
struct Node
{
int data;
struct Point p;
struct Node* next;
}n1 = { 10, {4,5}, NULL }; //结构体嵌套初始化
struct Node n2 = { 20, {5, 6}, NULL };//结构体嵌套初始化
1.6 结构体内存对齐
现在我们深入讨论一个问题:计算结构体的大小。
这也是一个特别热门的考点: 结构体内存对齐
代码演示:
struct S1
{
int i;
char c1;
};
struct S2
{
char c1;
int i;
char c2;
};
struct S3
{
char c1;
int a;
char c2;
char c3;
};
int main()
{
printf("%d\n", sizeof(struct S1));
printf("%d\n", sizeof(struct S2));
printf("%d\n", sizeof(struct S3));
return 0;
}
运行结果:
画图理解s1的存放方式
我们可以用offsetof这个宏来计算一下偏移量
#include <stddef.h>
#include <stdio.h>
struct S
{
char c;
int a;
};
int main()
{
struct S s = {0};
printf("%d\n", offsetof(struct S, c));//0
printf("%d\n", offsetof(struct S, a));//4
return 0;
}
运行结果:
offsetof是一个宏,用来计算偏移量,使用时要包含头文件 #include <stddef.h>
举例说明:
结构体里嵌套结构体的类型
考点
如何计算?
首先得掌握结构体的对齐规则:
- 结构体的第一个成员永远放在0偏移处。
- 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。 对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。
VS中默认的值为8
gcc环境下没有默认对齐数(没有默认对齐数时,对齐数就是成员自身的大小)- 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍,如果不够,则浪费空间对齐。
- 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整 体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。
为什么存在内存对齐?
大部分的参考资料都是如是说的:
1. 平台原因(移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特 定类型的数据,否则抛出硬件异常。
2. 性能原因:
数据结构(尤其是栈)应该尽可能地在自然边界上对齐。 原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。
总体来说:
结构体的内存对齐是拿空间来换取时间的做法
那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
让占用空间小的成员尽量集中在一起。
例如:
struct S1
{
char c1;
int i;
char c2;
};
struct S2
{
char c1;
char c2;
int i;
};
S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别。
1.7 修改默认对齐数
之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。
#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
#pragma pack(1)//设置默认对齐数为1
struct S2
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
//输出的结果是什么?
printf("%d\n", sizeof(struct S1));
printf("%d\n", sizeof(struct S2));
return 0;
}
运行结果:
结论:
结构在对齐方式不合适的时候,我么可以自己更改默认对齐数。
1.8 结构体传参
我们直接看代码:
struct S
{
int data[1000];
int num;
};
struct S s = { {1,2,3,4}, 1000 };
//结构体传参
void print1(struct S s)
{
printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
printf("%d\n", ps->num);
}
int main()
{
print1(s); //传结构体
print2(&s); //传地址
return 0;
}
上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的 下降。
结论:
结构体传参的时候,要传结构体的地址。
2. 位段
2.1 什么是位段
位段的声明和结构是类似的,有两个不同:
1.位段的成员必须是 int、unsigned int 或signed int 。
2.位段的成员名后边有一个冒号和一个数字。
比如:文章来源:https://www.toymoban.com/news/detail-407158.html
struct A
{
int _a:2;
int _b:5;
int _c:10;
int _d:30;
};
A就是一个位段类型。
那位段A的大小是多少?
//位段 - 二进制位
struct A
{
int _a : 2;
int _b : 5;
int _c : 10;
int _d : 30;
};//47 bit
//
int main()
{
struct A sa = {0};
printf("%d\n", sizeof(sa));
return 0;
}
打印结果:
2.2 位段的内存分配
- 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
- 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
- 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
//一个例子
struct S
{
char a:3;
char b:4;
char c:5;
char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;
//空间是如何开辟的?
假设分配到的内存中的比特位是由左向右使用
分配的内存剩余的比特位不够使用时,浪费掉
2.3 位段的跨平台问题
- int 位段被当成有符号数还是无符号数是不确定的。
- 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机 器会出问题。
- 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
- 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是 舍弃剩余的位还是利用,这是不确定的。
总结:
跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在。
2.4 位段的应用
3. 枚举
枚举顾名思义就是一一列举。
把可能的取值一一列举。
比如我们现实生活中:
一周的星期一到星期日是有限的7天,可以一一列举
月份有12个月,也可以一一列举
这里就可以使用枚举了。
3.1 枚举类型的定义
enum Day//星期
{
Mon,
Tues,
Wed,
Thur,
Fri,
Sat,
Sun
};
enum Sex//性别
{
MALE,
FEMALE,
SECRET
};
enum Color//颜色
{
RED,
GREEN,
BLUE
};
以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。
{}中的内容是枚举类型的可能取值,也叫 枚举常量 。
这些可能取值都是有值的,默认从0开始,一次递增1,当然在定义的时候也可以赋初值。
例如:
enum Sex
{
//枚举的可能取值,默认是从0开始,递增1的
//枚举常量
MALE,
FEMALE,
SECRET
};
int main()
{
enum Sex s = FEMALE;
printf("%d\n", MALE);
printf("%d\n", FEMALE);
printf("%d\n", SECRET);
return 0;
}
打印结果:
当我们把MALE初始化成5时,结果就会从5开始递增
enum Sex
{
MALE=5,
FEMALE,
SECRET
};
结果演示:
当我们把FEMALE初始化成5时,结果就会变成0,5,6
代码演示:
enum Sex
{
MALE,
FEMALE=5,
SECRET
};
打印结果:
3.2 枚举的优点
我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点:
- 增加代码的可读性和可维护性
- 和#define定义的标识符比较枚举有类型检查,更加严谨。
- 防止了命名污染(封装)
- 便于调试
- 使用方便,一次可以定义多个常量
3.3 枚举的使用
enum Color//颜色
{
RED = 1,
GREEN = 2,
BLUE = 4
};
enum Color clr = GREEN;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。
4. 联合(共用体)
4.1 联合类型的定义
联合也是一种特殊的自定义类型 这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。
#include <stdio.h>
union Un
{
char c;//1
int i;//4
};
int main()
{
union Un u;
printf("%d\n", sizeof(u));
printf("%p\n", &u);
printf("%p\n", &(u.i));
printf("%p\n", &(u.c));
return 0;
}
打印结果:
4.2 联合的特点
联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联 合至少得有能力保存最大的那个成员)。
union Un
{
int i;
char c;
};
int main()
{
union Un un;
// 下面输出的结果是一样的吗?
printf("%d\n", &(un.i));
printf("%d\n", &(un.c));
//下面输出的结果是什么?
un.i = 0x11223344;
un.c = 0x55;
printf("%x\n", un.i);
return 0;
}
打印结果:
判断当前计算机的大小端存储
这个代码我们之前写过,但是现在有一种新的写法
看代码:
union Un
{
char c;//1
int i;//4
};
int main()
{
union Un u;
u.i = 1;
if (u.c == 1)
printf("小端\n");
else
printf("大端\n");
return 0;
}
运行结果:
4.3 联合大小的计算
联合的大小至少是最大成员的大小。
当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。
比如:
union Un1
{
char c[5];
int i;
};
union Un2
{
short c[7];
int i;
};
int main()
{
//下面输出的结果是什么?
printf("%d\n", sizeof(union Un1));
printf("%d\n", sizeof(union Un2));
return 0;
}
打印结果:
文章来源地址https://www.toymoban.com/news/detail-407158.html
到了这里,关于进阶C语言——自定义类型:结构体,枚举,联合的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!