数据集格式相互转换——CoCo、VOC、YOLO、TT100K

这篇具有很好参考价值的文章主要介绍了数据集格式相互转换——CoCo、VOC、YOLO、TT100K。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、CoCo

1.1 CoCo2VOC

from pycocotools.coco import COCO
import os
from lxml import etree, objectify
import shutil
from tqdm import tqdm
import sys
import argparse


# 将类别名字和id建立索引
def catid2name(coco):
    classes = dict()
    for cat in coco.dataset['categories']:
        classes[cat['id']] = cat['name']
    return classes


# 将标签信息写入xml
def save_anno_to_xml(filename, size, objs, save_path):
    E = objectify.ElementMaker(annotate=False)
    anno_tree = E.annotation(
        E.folder("DATA"),
        E.filename(filename),
        E.source(
            E.database("The VOC Database"),
            E.annotation("PASCAL VOC"),
            E.image("flickr")
        ),
        E.size(
            E.width(size['width']),
            E.height(size['height']),
            E.depth(size['depth'])
        ),
        E.segmented(0)
    )
    for obj in objs:
        E2 = objectify.ElementMaker(annotate=False)
        anno_tree2 = E2.object(
            E.name(obj[0]),
            E.pose("Unspecified"),
            E.truncated(0),
            E.difficult(0),
            E.bndbox(
                E.xmin(obj[1]),
                E.ymin(obj[2]),
                E.xmax(obj[3]),
                E.ymax(obj[4])
            )
        )
        anno_tree.append(anno_tree2)
    anno_path = os.path.join(save_path, filename[:-3] + "xml")
    etree.ElementTree(anno_tree).write(anno_path, pretty_print=True)


# 利用cocoAPI从json中加载信息
def load_coco(anno_file, xml_save_path):
    if os.path.exists(xml_save_path):
        shutil.rmtree(xml_save_path)
    os.makedirs(xml_save_path)

    coco = COCO(anno_file)
    classes = catid2name(coco)
    imgIds = coco.getImgIds()
    classesIds = coco.getCatIds()
    for imgId in tqdm(imgIds):
        size = {}
        img = coco.loadImgs(imgId)[0]
        filename = img['file_name']
        width = img['width']
        height = img['height']
        size['width'] = width
        size['height'] = height
        size['depth'] = 3
        annIds = coco.getAnnIds(imgIds=img['id'], iscrowd=None)
        anns = coco.loadAnns(annIds)
        objs = []
        for ann in anns:
            object_name = classes[ann['category_id']]
            # bbox:[x,y,w,h]
            bbox = list(map(int, ann['bbox']))
            xmin = bbox[0]
            ymin = bbox[1]
            xmax = bbox[0] + bbox[2]
            ymax = bbox[1] + bbox[3]
            obj = [object_name, xmin, ymin, xmax, ymax]
            objs.append(obj)
        save_anno_to_xml(filename, size, objs, xml_save_path)


def parseJsonFile(data_dir, xmls_save_path):
    assert os.path.exists(data_dir), "data dir:{} does not exits".format(data_dir)

    if os.path.isdir(data_dir):
        data_types = ['train2017', 'val2017']
        for data_type in data_types:
            ann_file = 'instances_{}.json'.format(data_type)
            xmls_save_path = os.path.join(xmls_save_path, data_type)
            load_coco(ann_file, xmls_save_path)
    elif os.path.isfile(data_dir):
        anno_file = data_dir
        load_coco(anno_file, xmls_save_path)


if __name__ == '__main__':
    """
    脚本说明:
        该脚本用于将coco格式的json文件转换为voc格式的xml文件
    参数说明:
        data_dir:json文件的路径
        xml_save_path:xml输出路径
    """

    parser = argparse.ArgumentParser()
    parser.add_argument('-d', '--data-dir', type=str, default='./data/labels/coco/train.json', help='json path')
    parser.add_argument('-s', '--save-path', type=str, default='./data/convert/voc', help='xml save path')
    opt = parser.parse_args()
    print(opt)

    if len(sys.argv) > 1:
        parseJsonFile(opt.data_dir, opt.save_path)
    else:
        data_dir = './data/labels/coco/train.json'
        xml_save_path = './data/convert/voc'
        parseJsonFile(data_dir=data_dir, xmls_save_path=xml_save_path)

1.2 CoCo2YOLO

from pycocotools.coco import COCO
import os
import shutil
from tqdm import tqdm
import sys
import argparse

images_nums = 0
category_nums = 0
bbox_nums = 0

# 将类别名字和id建立索引
def catid2name(coco):
    classes = dict()
    for cat in coco.dataset['categories']:
        classes[cat['id']] = cat['name']
    return classes


# 将[xmin,ymin,xmax,ymax]转换为yolo格式[x_center, y_center, w, h](做归一化)
def xyxy2xywhn(object, width, height):
    cat_id = object[0]
    xn = object[1] / width
    yn = object[2] / height
    wn = object[3] / width
    hn = object[4] / height
    out = "{} {:.5f} {:.5f} {:.5f} {:.5f}".format(cat_id, xn, yn, wn, hn)
    return out


def save_anno_to_txt(images_info, save_path):
    filename = images_info['filename']
    txt_name = filename[:-3] + "txt"
    with open(os.path.join(save_path, txt_name), "w") as f:
        for obj in images_info['objects']:
            line = xyxy2xywhn(obj, images_info['width'], images_info['height'])
            f.write("{}\n".format(line))


# 利用cocoAPI从json中加载信息
def load_coco(anno_file, xml_save_path):
    if os.path.exists(xml_save_path):
        shutil.rmtree(xml_save_path)
    os.makedirs(xml_save_path)

    coco = COCO(anno_file)
    classes = catid2name(coco)
    imgIds = coco.getImgIds()
    classesIds = coco.getCatIds()

    with open(os.path.join(xml_save_path, "classes.txt"), 'w') as f:
        for id in classesIds:
            f.write("{}\n".format(classes[id]))

    for imgId in tqdm(imgIds):
        info = {}
        img = coco.loadImgs(imgId)[0]
        filename = img['file_name']
        width = img['width']
        height = img['height']
        info['filename'] = filename
        info['width'] = width
        info['height'] = height
        annIds = coco.getAnnIds(imgIds=img['id'], iscrowd=None)
        anns = coco.loadAnns(annIds)
        objs = []
        for ann in anns:
            object_name = classes[ann['category_id']]
            # bbox:[x,y,w,h]
            bbox = list(map(float, ann['bbox']))
            xc = bbox[0] + bbox[2] / 2.
            yc = bbox[1] + bbox[3] / 2.
            w = bbox[2]
            h = bbox[3]
            obj = [ann['category_id'], xc, yc, w, h]
            objs.append(obj)
        info['objects'] = objs
        save_anno_to_txt(info, xml_save_path)


def parseJsonFile(json_path, txt_save_path):
    assert os.path.exists(json_path), "json path:{} does not exists".format(json_path)
    if os.path.exists(txt_save_path):
        shutil.rmtree(txt_save_path)
    os.makedirs(txt_save_path)

    assert json_path.endswith('json'), "json file:{} It is not json file!".format(json_path)

    load_coco(json_path, txt_save_path)


if __name__ == '__main__':
    """
    脚本说明:
        该脚本用于将coco格式的json文件转换为yolo格式的txt文件
    参数说明:
        json_path:json文件的路径
        txt_save_path:txt保存的路径
    """
    parser = argparse.ArgumentParser()
    parser.add_argument('-jp', '--json-path', type=str, default='./data/labels/coco/train.json', help='json path')
    parser.add_argument('-s', '--save-path', type=str, default='./data/convert/yolo', help='txt save path')
    opt = parser.parse_args()

    if len(sys.argv) > 1:
        print(opt)
        parseJsonFile(opt.json_path, opt.save_path)
        # print("image nums: {}".format(images_nums))
        # print("category nums: {}".format(category_nums))
        # print("bbox nums: {}".format(bbox_nums))
    else:
        json_path = './data/labels/coco/train.json'  # r'D:\practice\compete\goodsDec\data\train\train.json'
        txt_save_path = './data/convert/yolo'
        parseJsonFile(json_path, txt_save_path)
        # print("image nums: {}".format(images_nums))
        # print("category nums: {}".format(category_nums))
        # print("bbox nums: {}".format(bbox_nums))

二、VOC

2.1 VOC2CoCo

import xml.etree.ElementTree as ET
import os
import json
from datetime import datetime
import sys
import argparse

coco = dict()
coco['images'] = []
coco['type'] = 'instances'
coco['annotations'] = []
coco['categories'] = []

category_set = dict()
image_set = set()

category_item_id = -1
image_id = 000000
annotation_id = 0


def addCatItem(name):
    global category_item_id
    category_item = dict()
    category_item['supercategory'] = 'none'
    category_item_id += 1
    category_item['id'] = category_item_id
    category_item['name'] = name
    coco['categories'].append(category_item)
    category_set[name] = category_item_id
    return category_item_id


def addImgItem(file_name, size):
    global image_id
    if file_name is None:
        raise Exception('Could not find filename tag in xml file.')
    if size['width'] is None:
        raise Exception('Could not find width tag in xml file.')
    if size['height'] is None:
        raise Exception('Could not find height tag in xml file.')
    image_id += 1
    image_item = dict()
    image_item['id'] = image_id
    image_item['file_name'] = file_name
    image_item['width'] = size['width']
    image_item['height'] = size['height']
    image_item['license'] = None
    image_item['flickr_url'] = None
    image_item['coco_url'] = None
    image_item['date_captured'] = str(datetime.today())
    coco['images'].append(image_item)
    image_set.add(file_name)
    return image_id


def addAnnoItem(object_name, image_id, category_id, bbox):
    global annotation_id
    annotation_item = dict()
    annotation_item['segmentation'] = []
    seg = []
    # bbox[] is x,y,w,h
    # left_top
    seg.append(bbox[0])
    seg.append(bbox[1])
    # left_bottom
    seg.append(bbox[0])
    seg.append(bbox[1] + bbox[3])
    # right_bottom
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1] + bbox[3])
    # right_top
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1])

    annotation_item['segmentation'].append(seg)

    annotation_item['area'] = bbox[2] * bbox[3]
    annotation_item['iscrowd'] = 0
    annotation_item['ignore'] = 0
    annotation_item['image_id'] = image_id
    annotation_item['bbox'] = bbox
    annotation_item['category_id'] = category_id
    annotation_id += 1
    annotation_item['id'] = annotation_id
    coco['annotations'].append(annotation_item)


def read_image_ids(image_sets_file):
    ids = []
    with open(image_sets_file, 'r') as f:
        for line in f.readlines():
            ids.append(line.strip())
    return ids


def parseXmlFilse(data_dir, json_save_path, split='train'):
    assert os.path.exists(data_dir), "data path:{} does not exist".format(data_dir)
    labelfile = split + ".txt"
    image_sets_file = os.path.join(data_dir, "ImageSets", "Main", labelfile)
    xml_files_list = []
    if os.path.isfile(image_sets_file):
        ids = read_image_ids(image_sets_file)
        xml_files_list = [os.path.join(data_dir, "Annotations", f"{i}.xml") for i in ids]
    elif os.path.isdir(data_dir):
        # 修改此处xml的路径即可
        # xml_dir = os.path.join(data_dir,"labels/voc")
        xml_dir = data_dir
        xml_list = os.listdir(xml_dir)
        xml_files_list = [os.path.join(xml_dir, i) for i in xml_list]

    for xml_file in xml_files_list:
        if not xml_file.endswith('.xml'):
            continue

        tree = ET.parse(xml_file)
        root = tree.getroot()

        # 初始化
        size = dict()
        size['width'] = None
        size['height'] = None

        if root.tag != 'annotation':
            raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag))

        # 提取图片名字
        file_name = root.findtext('filename')
        assert file_name is not None, "filename is not in the file"

        # 提取图片 size {width,height,depth}
        size_info = root.findall('size')
        assert size_info is not None, "size is not in the file"
        for subelem in size_info[0]:
            size[subelem.tag] = int(subelem.text)

        if file_name is not None and size['width'] is not None and file_name not in image_set:
            # 添加coco['image'],返回当前图片ID
            current_image_id = addImgItem(file_name, size)
            print('add image with name: {}\tand\tsize: {}'.format(file_name, size))
        elif file_name in image_set:
            raise Exception('file_name duplicated')
        else:
            raise Exception("file name:{}\t size:{}".format(file_name, size))

        # 提取一张图片内所有目标object标注信息
        object_info = root.findall('object')
        if len(object_info) == 0:
            continue
        # 遍历每个目标的标注信息
        for object in object_info:
            # 提取目标名字
            object_name = object.findtext('name')
            if object_name not in category_set:
                # 创建类别索引
                current_category_id = addCatItem(object_name)
            else:
                current_category_id = category_set[object_name]

            # 初始化标签列表
            bndbox = dict()
            bndbox['xmin'] = None
            bndbox['xmax'] = None
            bndbox['ymin'] = None
            bndbox['ymax'] = None
            # 提取box:[xmin,ymin,xmax,ymax]
            bndbox_info = object.findall('bndbox')
            for box in bndbox_info[0]:
                bndbox[box.tag] = int(box.text)

            if bndbox['xmin'] is not None:
                if object_name is None:
                    raise Exception('xml structure broken at bndbox tag')
                if current_image_id is None:
                    raise Exception('xml structure broken at bndbox tag')
                if current_category_id is None:
                    raise Exception('xml structure broken at bndbox tag')
                bbox = []
                # x
                bbox.append(bndbox['xmin'])
                # y
                bbox.append(bndbox['ymin'])
                # w
                bbox.append(bndbox['xmax'] - bndbox['xmin'])
                # h
                bbox.append(bndbox['ymax'] - bndbox['ymin'])
                print('add annotation with object_name:{}\timage_id:{}\tcat_id:{}\tbbox:{}'.format(object_name,
                                                                                                   current_image_id,
                                                                                                   current_category_id,
                                                                                                   bbox))
                addAnnoItem(object_name, current_image_id, current_category_id, bbox)

    json_parent_dir = os.path.dirname(json_save_path)
    if not os.path.exists(json_parent_dir):
        os.makedirs(json_parent_dir)
    json.dump(coco, open(json_save_path, 'w'))
    print("class nums:{}".format(len(coco['categories'])))
    print("image nums:{}".format(len(coco['images'])))
    print("bbox nums:{}".format(len(coco['annotations'])))


if __name__ == '__main__':
    """
    脚本说明:
        本脚本用于将VOC格式的标注文件.xml转换为coco格式的标注文件.json
    参数说明:
        voc_data_dir:两种格式
            1.voc2012文件夹的路径,会自动找到voc2012/imageSets/Main/xx.txt
            2.xml标签文件存放的文件夹
        json_save_path:json文件输出的文件夹
        split:主要用于voc2012查找xx.txt,如train.txt.如果用格式2,则不会用到该参数
    """
    voc_data_dir = 'D:/jinxData/voctest/Annotations'
    json_save_path = 'D:/jinxData/voc/voc2coco/train.json'
    split = 'train'
    parseXmlFilse(data_dir=voc_data_dir, json_save_path=json_save_path, split=split)

数据集格式相互转换——CoCo、VOC、YOLO、TT100K
数据集格式相互转换——CoCo、VOC、YOLO、TT100K
将annotations目录下的所有xml标注文件按coco格式写入了json文件中。

2.2 VOC2YOLO

import os
import json
import shutil
from lxml import etree
from tqdm import tqdm

category_set = set()
image_set = set()
bbox_nums = 0

class VOC2YOLO:
    def __init__(self):
        self.original_datasets = 'voc'
        self.to_datasets = 'yolo'

    def parse_xml_to_dict(self, xml):
        """
        将xml文件解析成字典形式,参考tensorflow的recursive_parse_xml_to_dict
        Args:
            xml: xml tree obtained by parsing XML file contents using lxml.etree

        Returns:
            Python dictionary holding XML contents.
        """
        if len(xml) == 0:  # 遍历到底层,直接返回tag对应的信息
            return {xml.tag: xml.text}

        result = {}
        for child in xml:
            child_result = self.parse_xml_to_dict(child)  # 递归遍历标签信息
            if child.tag != 'object':
                result[child.tag] = child_result[child.tag]
            else:
                if child.tag not in result:  # 因为object可能有多个,所以需要放入列表里
                    result[child.tag] = []
                result[child.tag].append(child_result[child.tag])
        return {xml.tag: result}

    def write_classIndices(self, category_set):
        class_indices = dict((k, v) for v, k in enumerate(category_set))
        json_str = json.dumps(dict((val, key) for key, val in class_indices.items()), indent=4)
        with open('class_indices.json', 'w') as json_file:
            json_file.write(json_str)

    def xyxy2xywhn(self, bbox, size):
        bbox = list(map(float, bbox))
        size = list(map(float, size))
        xc = (bbox[0] + (bbox[2] - bbox[0]) / 2.) / size[0]
        yc = (bbox[1] + (bbox[3] - bbox[1]) / 2.) / size[1]
        wn = (bbox[2] - bbox[0]) / size[0]
        hn = (bbox[3] - bbox[1]) / size[1]
        return (xc, yc, wn, hn)


    def parser_info(self, info: dict, only_cat=True, class_indices=None):
        filename = info['annotation']['filename']
        image_set.add(filename)
        objects = []
        width = int(info['annotation']['size']['width'])
        height = int(info['annotation']['size']['height'])
        for obj in info['annotation']['object']:
            obj_name = obj['name']
            category_set.add(obj_name)
            if only_cat:
                continue
            xmin = round(float(obj['bndbox']['xmin']))
            ymin = round(float(obj['bndbox']['ymin']))
            xmax = round(float(obj['bndbox']['xmax']))
            ymax = round(float(obj['bndbox']['ymax']))
            bbox = self.xyxy2xywhn((xmin, ymin, xmax, ymax), (width, height))
            if class_indices is not None:
                obj_category = class_indices[obj_name]
                object = [obj_category, bbox]
                objects.append(object)

        return filename, objects

    def parseXmlFilse(self, voc_dir, save_dir):
        assert os.path.exists(voc_dir), "ERROR {} does not exists".format(voc_dir)
        if os.path.exists(save_dir):
            shutil.rmtree(save_dir)
        os.makedirs(save_dir)

        xml_files = [os.path.join(voc_dir, i) for i in os.listdir(voc_dir) if os.path.splitext(i)[-1] == '.xml']
        for xml_file in xml_files:
            with open(xml_file) as fid:
                xml_str = fid.read()
            xml = etree.fromstring(xml_str)
            info_dict = self.parse_xml_to_dict(xml)
            self.parser_info(info_dict, only_cat=True)

        with open(save_dir + "/classes.txt", 'w') as classes_file:
            for cat in sorted(category_set):
                classes_file.write("{}\n".format(cat))

        class_indices = dict((v, k) for k, v in enumerate(sorted(category_set)))

        xml_files = tqdm(xml_files)
        for xml_file in xml_files:
            with open(xml_file) as fid:
                xml_str = fid.read()
            xml = etree.fromstring(xml_str)
            info_dict = self.parse_xml_to_dict(xml)
            filename, objects = self.parser_info(info_dict, only_cat=False, class_indices=class_indices)
            if len(objects) != 0:
                global bbox_nums
                bbox_nums += len(objects)
                with open(save_dir + "/" + filename.split(".")[0] + ".txt", 'w') as f:
                    for obj in objects:
                        f.write(
                            "{} {:.5f} {:.5f} {:.5f} {:.5f}\n".format(obj[0], obj[1][0], obj[1][1], obj[1][2],
                                                                      obj[1][3]))

if __name__ == '__main__':
    voc2yolo = VOC2YOLO()
    voc_dir = 'D:/jinxData/voctest/Annotations'
    save_dir = 'D:/jinxData/voctest/convert'
    voc2yolo.parseXmlFilse(voc_dir, save_dir)
    print("image nums: {}".format(len(image_set)))
    print("category nums: {}".format(len(category_set)))
    print("bbox nums: {}".format(bbox_nums))

数据集格式相互转换——CoCo、VOC、YOLO、TT100K
数据集格式相互转换——CoCo、VOC、YOLO、TT100K
此处得到的是全部的标签信息,可根据如下代码进行train、val和test的比例划分:

import os
import random
def voc_proportion_divide(xmlfilepath, txtsavepath, trainval_percent, train_percent):
    '''
    vod数据集比例自定义划分
    Args:
        xmlfilepath: xml文件的地址, xml一般存放在Annotations下,如'D:\jinx\Annatations'
        txtsavepath:地址选择自己数据下的ImageSets/Main,如'D:\jinx\ImageSets\Main'
        trainval_percent: 训练和验证集比例
        train_percent: 训练集比例(如trainval_percent=0.8,train_percent=0.7表示0.7train、 0.1val、0.2test)
    '''
    total_xml = os.listdir(xmlfilepath)
    if not os.path.exists(txtsavepath):
        os.makedirs(txtsavepath)

    num = len(total_xml)
    list_index = range(num)
    tv = int(num * trainval_percent)
    tr = int(tv * train_percent)
    trainval = random.sample(list_index, tv)
    train = random.sample(trainval, tr)

    file_trainval = open(txtsavepath + '/trainval.txt', 'w')
    file_test = open(txtsavepath + '/test.txt', 'w')
    file_train = open(txtsavepath + '/train.txt', 'w')
    file_val = open(txtsavepath + '/val.txt', 'w')

    for i in list_index:
        name = total_xml[i][:-4] + '\n'
        if i in trainval:
            file_trainval.write(name)
            if i in train:
                file_train.write(name)
            else:
                file_val.write(name)
        else:
            file_test.write(name)
    file_trainval.close()
    file_train.close()
    file_val.close()
    file_test.close()

三、YOLO

3.1 YOLO2CoCo

import argparse
import json
import os
import sys
import shutil
from datetime import datetime

import cv2

coco = dict()
coco['images'] = []
coco['type'] = 'instances'
coco['annotations'] = []
coco['categories'] = []

category_set = dict()
image_set = set()

image_id = 000000
annotation_id = 0


def addCatItem(category_dict):
    for k, v in category_dict.items():
        category_item = dict()
        category_item['supercategory'] = 'none'
        category_item['id'] = int(k)
        category_item['name'] = v
        coco['categories'].append(category_item)


def addImgItem(file_name, size):
    global image_id
    image_id += 1
    image_item = dict()
    image_item['id'] = image_id
    image_item['file_name'] = file_name
    image_item['width'] = size[1]
    image_item['height'] = size[0]
    image_item['license'] = None
    image_item['flickr_url'] = None
    image_item['coco_url'] = None
    image_item['date_captured'] = str(datetime.today())
    coco['images'].append(image_item)
    image_set.add(file_name)
    return image_id


def addAnnoItem(object_name, image_id, category_id, bbox):
    global annotation_id
    annotation_item = dict()
    annotation_item['segmentation'] = []
    seg = []
    # bbox[] is x,y,w,h
    # left_top
    seg.append(bbox[0])
    seg.append(bbox[1])
    # left_bottom
    seg.append(bbox[0])
    seg.append(bbox[1] + bbox[3])
    # right_bottom
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1] + bbox[3])
    # right_top
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1])

    annotation_item['segmentation'].append(seg)

    annotation_item['area'] = bbox[2] * bbox[3]
    annotation_item['iscrowd'] = 0
    annotation_item['ignore'] = 0
    annotation_item['image_id'] = image_id
    annotation_item['bbox'] = bbox
    annotation_item['category_id'] = category_id
    annotation_id += 1
    annotation_item['id'] = annotation_id
    coco['annotations'].append(annotation_item)


def xywhn2xywh(bbox, size):
    bbox = list(map(float, bbox))
    size = list(map(float, size))
    xmin = (bbox[0] - bbox[2] / 2.) * size[1]
    ymin = (bbox[1] - bbox[3] / 2.) * size[0]
    w = bbox[2] * size[1]
    h = bbox[3] * size[0]
    box = (xmin, ymin, w, h)
    return list(map(int, box))


def parseXmlFilse(image_path, anno_path, save_path, json_name='train.json'):
    assert os.path.exists(image_path), "ERROR {} dose not exists".format(image_path)
    assert os.path.exists(anno_path), "ERROR {} dose not exists".format(anno_path)
    if os.path.exists(save_path):
        shutil.rmtree(save_path)
    os.makedirs(save_path)
    json_path = os.path.join(save_path, json_name)

    category_set = []
    with open(anno_path + '/classes.txt', 'r') as f:
        for i in f.readlines():
            category_set.append(i.strip())
    category_id = dict((k, v) for k, v in enumerate(category_set))
    addCatItem(category_id)

    images = [os.path.join(image_path, i) for i in os.listdir(image_path)]
    files = [os.path.join(anno_path, i) for i in os.listdir(anno_path)]
    images_index = dict((v.split(os.sep)[-1][:-4], k) for k, v in enumerate(images))
    for file in files:
        if os.path.splitext(file)[-1] != '.txt' or 'classes' in file.split(os.sep)[-1]:
            continue
        if file.split(os.sep)[-1][:-4] in images_index:
            index = images_index[file.split(os.sep)[-1][:-4]]
            img = cv2.imread(images[index])
            shape = img.shape
            filename = images[index].split(os.sep)[-1]
            current_image_id = addImgItem(filename, shape)
        else:
            continue
        with open(file, 'r') as fid:
            for i in fid.readlines():
                i = i.strip().split()
                category = int(i[0])
                category_name = category_id[category]
                bbox = xywhn2xywh((i[1], i[2], i[3], i[4]), shape)
                addAnnoItem(category_name, current_image_id, category, bbox)

    json.dump(coco, open(json_path, 'w'))
    print("class nums:{}".format(len(coco['categories'])))
    print("image nums:{}".format(len(coco['images'])))
    print("bbox nums:{}".format(len(coco['annotations'])))


if __name__ == '__main__':
    """
    脚本说明:
        本脚本用于将yolo格式的标注文件.txt转换为coco格式的标注文件.json
    参数说明:
        anno_path:标注文件txt存储路径
        save_path:json文件输出的文件夹
        image_path:图片路径
        json_name:json文件名字
    """
    anno_path = 'D:/jinxData/TT100K45/labels/test'
    save_path = 'D:/jinxData/YOLO/yolo2coco/test'
    image_path = 'D:/jinxData/TT100K45/images/test'
    json_name = 'train.json'
    parseXmlFilse(image_path, anno_path, save_path, json_name)

数据集格式相互转换——CoCo、VOC、YOLO、TT100K
数据集格式相互转换——CoCo、VOC、YOLO、TT100K
train和val同理。

3.2 YOLO2VOC

import argparse
import os
import sys
import shutil

import cv2
from lxml import etree, objectify

# 将标签信息写入xml
from tqdm import tqdm

images_nums = 0
category_nums = 0
bbox_nums = 0

def save_anno_to_xml(filename, size, objs, save_path):
    E = objectify.ElementMaker(annotate=False)
    anno_tree = E.annotation(
        E.folder("DATA"),
        E.filename(filename),
        E.source(
            E.database("The VOC Database"),
            E.annotation("PASCAL VOC"),
            E.image("flickr")
        ),
        E.size(
            E.width(size[1]),
            E.height(size[0]),
            E.depth(size[2])
        ),
        E.segmented(0)
    )
    for obj in objs:
        E2 = objectify.ElementMaker(annotate=False)
        anno_tree2 = E2.object(
            E.name(obj[0]),
            E.pose("Unspecified"),
            E.truncated(0),
            E.difficult(0),
            E.bndbox(
                E.xmin(obj[1][0]),
                E.ymin(obj[1][1]),
                E.xmax(obj[1][2]),
                E.ymax(obj[1][3])
            )
        )
        anno_tree.append(anno_tree2)
    anno_path = os.path.join(save_path, filename[:-3] + "xml")
    etree.ElementTree(anno_tree).write(anno_path, pretty_print=True)


def xywhn2xyxy(bbox, size):
    bbox = list(map(float, bbox))
    size = list(map(float, size))
    xmin = (bbox[0] - bbox[2] / 2.) * size[1]
    ymin = (bbox[1] - bbox[3] / 2.) * size[0]
    xmax = (bbox[0] + bbox[2] / 2.) * size[1]
    ymax = (bbox[1] + bbox[3] / 2.) * size[0]
    box = [xmin, ymin, xmax, ymax]
    return list(map(int, box))


def parseXmlFilse(image_path, anno_path, save_path):
    global images_nums, category_nums, bbox_nums
    assert os.path.exists(image_path), "ERROR {} dose not exists".format(image_path)
    assert os.path.exists(anno_path), "ERROR {} dose not exists".format(anno_path)
    if os.path.exists(save_path):
        shutil.rmtree(save_path)
    os.makedirs(save_path)

    category_set = []
    with open(anno_path + '/classes.txt', 'r') as f:
        for i in f.readlines():
            category_set.append(i.strip())
    category_nums = len(category_set)
    category_id = dict((k, v) for k, v in enumerate(category_set))

    images = [os.path.join(image_path, i) for i in os.listdir(image_path)]
    files = [os.path.join(anno_path, i) for i in os.listdir(anno_path)]
    images_index = dict((v.split(os.sep)[-1][:-4], k) for k, v in enumerate(images))
    images_nums = len(images)

    for file in tqdm(files):
        if os.path.splitext(file)[-1] != '.txt' or 'classes' in file.split(os.sep)[-1]:
            continue
        if file.split(os.sep)[-1][:-4] in images_index:
            index = images_index[file.split(os.sep)[-1][:-4]]
            img = cv2.imread(images[index])
            shape = img.shape
            filename = images[index].split(os.sep)[-1]
        else:
            continue
        objects = []
        with open(file, 'r') as fid:
            for i in fid.readlines():
                i = i.strip().split()
                category = int(i[0])
                category_name = category_id[category]
                bbox = xywhn2xyxy((i[1], i[2], i[3], i[4]), shape)
                obj = [category_name, bbox]
                objects.append(obj)
        bbox_nums += len(objects)
        save_anno_to_xml(filename, shape, objects, save_path)


if __name__ == '__main__':
    """
    脚本说明:
        本脚本用于将yolo格式的标注文件.txt转换为voc格式的标注文件.xml
    参数说明:
        anno_path:标注文件txt存储路径
        save_path:json文件输出的文件夹
        image_path:图片路径
    """

    anno_path = 'D:/jinxData/TT100K45/labels/test'
    save_path = 'D:/jinxData/YOLO/yolo2voc/test'
    image_path = 'D:/jinxData/TT100K45/images/test'
    parseXmlFilse(image_path, anno_path, save_path)
    print("image nums: {}".format(images_nums))
    print("category nums: {}".format(category_nums))
    print("bbox nums: {}".format(bbox_nums))

数据集格式相互转换——CoCo、VOC、YOLO、TT100K

数据集格式相互转换——CoCo、VOC、YOLO、TT100K

train、val和test分别执行一次即可。

以上代码参考自博文数据转换。文章来源地址https://www.toymoban.com/news/detail-407284.html

四、TT100K

4.1 TT100K2YOLO

import os
import json
from random import random
import cv2
import shutil
import json
import xml.dom.minidom
from tqdm import tqdm
import argparse

class TT100K2COCO:
    def __init__(self):
        self.original_datasets = 'tt100k'
        self.to_datasets = 'coco'

    def class_statistics(self):
        # os.makedirs('annotations', exist_ok=True)
        # 存放数据的父路径
        parent_path = 'D:/jinxData/TT100K/data'

        # 读TT100K原始数据集标注文件
        with open(os.path.join(parent_path, 'annotations.json')) as origin_json:
            origin_dict = json.load(origin_json)
            classes = origin_dict['types']
        # 建立统计每个类别包含的图片的字典
        sta = {}
        for i in classes:
            sta[i] = []

        images_dic = origin_dict['imgs']

        # 记录所有保留的图片
        saved_images = []
        # 遍历TT100K的imgs
        for image_id in images_dic:
            image_element = images_dic[image_id]
            image_path = image_element['path']

            # 添加图像的信息到dataset中
            image_path = image_path.split('/')[-1]
            obj_list = image_element['objects']

            # 遍历每张图片的标注信息
            for anno_dic in obj_list:
                label_key = anno_dic['category']
                # 防止一个图片多次加入一个标签类别
                if image_path not in sta[label_key]:
                    sta[label_key].append(image_path)

        # 只保留包含图片数超过100的类别
        result = {k: v for k, v in sta.items() if len(v) >= 100}

        for i in result:
            print("the type of {} includes {} images".format(i, len(result[i])))
            saved_images.extend(result[i])

        saved_images = list(set(saved_images))
        print("total types is {}".format(len(result)))

        type_list = list(result.keys())
        result = {"type": type_list, "details": result, "images": saved_images}
        print(type_list)
        # 保存结果
        json_name = os.path.join(parent_path, 'statistics.json')
        with open(json_name, 'w', encoding="utf-8") as f:
            json.dump(result, f, ensure_ascii=False, indent=1)

    def original_datasets2object_datasets_re(self):
        '''
        重新划分数据集
        :return:
        '''
        # os.makedirs('annotations2', exist_ok=True)
        # 存放数据的父路径
        parent_path = 'D:/jinxData/TT100K/data'

        # 读TT100K原始数据集标注文件
        with open(os.path.join(parent_path, 'annotations.json')) as origin_json:
            origin_dict = json.load(origin_json)

        with open(os.path.join(parent_path, 'statistics.json')) as select_json:
            select_dict = json.load(select_json)
            classes = select_dict['type']

        train_dataset = {'info': {}, 'licenses': [], 'categories': [], 'images': [], 'annotations': []}
        val_dataset = {'info': {}, 'licenses': [], 'categories': [], 'images': [], 'annotations': []}
        test_dataset = {'info': {}, 'licenses': [], 'categories': [], 'images': [], 'annotations': []}
        label = {}  # 记录每个标志类别的id
        count = {}  # 记录每个类别的图片数
        owntype_sum = {}

        info = {
            "year": 2021,  # 年份
            "version": '1.0',  # 版本
            "description": "TT100k_to_coco",  # 数据集描述
            "contributor": "Tecent&Tsinghua",  # 提供者
            "url": 'https://cg.cs.tsinghua.edu.cn/traffic-sign/',  # 下载地址
            "date_created": 2021 - 1 - 15
        }
        licenses = {
            "id": 1,
            "name": "null",
            "url": "null",
        }

        train_dataset['info'] = info
        val_dataset['info'] = info
        test_dataset['info'] = info
        train_dataset['licenses'] = licenses
        val_dataset['licenses'] = licenses
        test_dataset['licenses'] = licenses

        # 建立类别和id的关系
        for i, cls in enumerate(classes):
            train_dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'traffic_sign'})
            val_dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'traffic_sign'})
            test_dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'traffic_sign'})
            label[cls] = i
            count[cls] = 0
            owntype_sum[cls] = 0

        images_dic = origin_dict['imgs']

        obj_id = 1

        # 计算出每个类别共‘包含’的图片数
        for image_id in images_dic:

            image_element = images_dic[image_id]
            image_path = image_element['path']
            image_name = image_path.split('/')[-1]
            # 在所选的类别图片中
            if image_name not in select_dict['images']:
                continue

            # 处理TT100K中的标注信息
            obj_list = image_element['objects']
            # 记录图片中包含最多的实例所属的type
            includes_type = {}
            for anno_dic in obj_list:
                if anno_dic["category"] not in select_dict["type"]:
                    continue
                # print(anno_dic["category"])
                if anno_dic["category"] in includes_type:
                    includes_type[anno_dic["category"]] += 1
                else:
                    includes_type[anno_dic["category"]] = 1
            # print(includes_type)
            own_type = max(includes_type, key=includes_type.get)
            owntype_sum[own_type] += 1

        # TT100K的annotation转换成coco的
        for image_id in images_dic:

            image_element = images_dic[image_id]
            image_path = image_element['path']
            image_name = image_path.split('/')[-1]
            # 在所选的类别图片中
            if image_name not in select_dict['images']:
                continue
            print("dealing with {} image".format(image_path))
            # shutil.copy(os.path.join(parent_path,image_path),os.path.join(parent_path,"dataset/JPEGImages"))

            # 处理TT100K中的标注信息
            obj_list = image_element['objects']
            # 记录图片中包含最多的实例所属的type
            includes_type = {}
            for anno_dic in obj_list:
                if anno_dic["category"] not in select_dict["type"]:
                    continue
                # print(anno_dic["category"])
                if anno_dic["category"] in includes_type:
                    includes_type[anno_dic["category"]] += 1
                else:
                    includes_type[anno_dic["category"]] = 1
            # print(includes_type)
            own_type = max(includes_type, key=includes_type.get)
            count[own_type] += 1
            num_rate = count[own_type] / owntype_sum[own_type]

            # 切换dataset的引用对象,从而划分数据集根据每个类别类别的总数量按7:2:1分为了train_set,val_set,test_set。
            # 其中每个图片所属类别根据该图片包含的类别的数量决定(归属为含有类别最多的类别)
            if num_rate < 0.7:
                dataset = train_dataset
            elif num_rate < 0.9:
                dataset = val_dataset
            else:
                print("dataset=test_dataset")
                dataset = test_dataset

            for anno_dic in obj_list:
                if anno_dic["category"] not in select_dict["type"]:
                    continue
                x = anno_dic['bbox']['xmin']
                y = anno_dic['bbox']['ymin']
                width = anno_dic['bbox']['xmax'] - anno_dic['bbox']['xmin']
                height = anno_dic['bbox']['ymax'] - anno_dic['bbox']['ymin']
                label_key = anno_dic['category']

                dataset['annotations'].append({
                    'area': width * height,
                    'bbox': [x, y, width, height],
                    'category_id': label[label_key],
                    'id': obj_id,
                    'image_id': image_id,
                    'iscrowd': 0,
                    # mask, 矩形是从左上角点按顺时针的四个顶点
                    'segmentation': [[x, y, x + width, y, x + width, y + height, x, y + height]]
                })
                # 每个标注的对象id唯一
                obj_id += 1

            # 用opencv读取图片,得到图像的宽和高
            im = cv2.imread(os.path.join(parent_path, image_path))
            # print(image_path)
            H, W, _ = im.shape
            # 添加图像的信息到dataset中
            dataset['images'].append({'file_name': image_name,
                                      'id': image_id,
                                      'width': W,
                                      'height': H})

        # 保存结果
        for phase in ['train', 'val', 'test']:
            json_name = os.path.join(parent_path, 'dataset/annotations/{}.json'.format(phase))
            json_name = json_name.replace('\\', '/')
            with open(json_name, 'w', encoding="utf-8") as f:
                if phase == 'train':
                    json.dump(train_dataset, f, ensure_ascii=False, indent=1)
                if phase == 'val':
                    json.dump(val_dataset, f, ensure_ascii=False, indent=1)
                if phase == 'test':
                    json.dump(test_dataset, f, ensure_ascii=False, indent=1)

 
    def divide_TrainValTest(self, source, target):
        '''
        创建文件路径
        :param source: 源文件位置
        :param target: 目标文件位置
        '''
        # for i in ['train', 'val', 'test']:
        #     path = target + '/' + i
        #     if not os.path.exists(path):
        #         os.makedirs(path)

        # 遍历目录下的文件名,复制对应的图片到指定目录
        for root, dirs, files in os.walk(source):
            for file in files:
                file_name = os.path.splitext(file)[0]
                if file_name == 'train' or file_name == 'val' or file_name =='test' or file_name =='classes':
                    continue
                image_path = os.path.join(file_name + '.jpg')
                # print(image_path)

                if 'train' in source:
                    shutil.copyfile('D:/jinxData/TT100K/data/image_reparation/'
                                    + image_path, target + '/train/' + image_path)
                elif 'val' in source:
                    shutil.copyfile('D:/jinxData/TT100K/data/image_reparation/'
                                    + image_path, target + '/val/' + image_path)
                elif 'test' in source:
                    shutil.copyfile('D:/jinxData/TT100K/data/image_reparation/'
                                    + image_path, target + '/test/' + image_path)

if __name__ == '__main__':
    tt100k = TT100K2COCO()

    # tt100k.class_statistics()
    # tt100k.original_datasets2object_datasets_re()
    # tt100k.coco_json2yolo_txt('train')
    # tt100k.coco_json2yolo_txt('val')
    # tt100k.coco_json2yolo_txt('test')
    tt100k.divide_TrainValTest('D:/jinxData/TT100K/data/dataset/annotations/train', 'D:/jinxData/TT100K/data')
    tt100k.divide_TrainValTest('D:/jinxData/TT100K/data/dataset/annotations/val', 'D:/jinxData/TT100K/data')
    tt100k.divide_TrainValTest('D:/jinxData/TT100K/data/dataset/annotations/test', 'D:/jinxData/TT100K/data')

到了这里,关于数据集格式相互转换——CoCo、VOC、YOLO、TT100K的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习必备知识——模型数据集Yolo与Voc格式文件相互转化

    在深度学习中,第一步要做的往往就是 处理数据集 ,尤其是学习百度飞桨PaddlePaddle的小伙伴,数据集经常要用Voc格式的,比如性能突出的ppyolo等模型。所以学会 数据集转化 的本领是十分必要的。这篇博客就带你一起进行Yolo与Voc格式的相互转化,附详细代码! Yolo数据集主要

    2024年01月17日
    浏览(45)
  • YOLOV7训练TT100K交通标识符数据集

                                                             《临江仙》                                                         作者:缠中说禅                 浊水倾波三万里,愀然独坐孤峰。龙潜狮睡候飙风。无情皆竖子,有泪亦

    2024年02月06日
    浏览(39)
  • YOLO格式数据集(.txt)如何转换为VOC格式数据集(.xml)

    前言: 安装好python环境与编译器 转换: 将标注文件从文本格式( .txt )转换为 XML 格式( .xml )可以通过以下步骤完成: 解析文本标注文件:打开 .txt 文件,逐行读取每个标注,并解析边界框坐标和类别信息。 创建 XML 文件:使用 Python 的内置库 xml.etree.ElementTree 创建一个

    2024年02月12日
    浏览(43)
  • 目标检测数据集格式转换:将labelme格式转为YOLO以及VOC格式

    一个目标检测项目需要自己找图片标注数据进行训练,训练需要YOLO格式,但数据增广需要VOC格式,该文记录如何将labelme标注的数据格式转为YOLO格式,再从YOLO格式转为VOC格式,只作为自己用的记录,如果你刚好也需要这么干,或者需要文中提到的某一种转换,也可以参考一下

    2024年02月08日
    浏览(49)
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集

    由于本人水平有限,难免出现错漏,敬请批评改正。 更多精彩内容,可点击进入YOLO系列专栏或我的个人主页查看 YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制 YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层 YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU YOLOv7训练自己的数据集(口罩检测)

    2024年02月15日
    浏览(36)
  • 数据格式转换(labelme、labelimg、yolo格式相互转换)

    👨‍💻 个人简介: 深度学习图像领域工作者 🎉 总结链接:              链接中主要是个人工作的总结,每个链接都是一些常用demo,代码直接复制运行即可。包括:                     📌 1.工作中常用深度学习脚本                     📌 2.to

    2023年04月23日
    浏览(45)
  • win下YOLOv7训练自己的数据集(交通标志TT100K识别)

    预测结果: 数据集的准备包括数据集适配YOLO格式的重新分配以及相应配置文件的书写,此处可查看博主的TT100K2yolo的重新分配博文,该文章包括数据集划分,配置文件书写,以及最终的数据集层级目录组织,可以直接提供给下一步进行训练。 需要注意的是数据集的yaml文件有

    2024年02月06日
    浏览(47)
  • 将Yolo格式标注文件转换为VOC格式

    这篇文章主要参考博客Yolo标准数据集格式转Voc数据集中的代码,对原博客代码进行一定修改、添加注释,此外还在后面添加了我自己写的一段关于对转换后的标注文件进行整理的脚本代码。 Yolo标注的格式与VOC格式不同之处在于: (1)Yolo格式下的每张图片的所有包含的目标

    2024年02月11日
    浏览(42)
  • VOC数据集格式转COCO数据集格式

            项目需要coco格式的数据集但是自己的数据集是VOC格式的该如何转换呢。 VOC格式   coco格式:  因为VOC格式的数据集中图片是放在一个文件下的,所以需要先划分训练集、验证集和测试集的比例,需要改两行文件路径和划分比例 然后 根据划分的三个TXT文件将VOC的xml转

    2024年02月05日
    浏览(32)
  • 深度学习目标检测数据VisDrone2019(to yolo / voc / coco)---MMDetection数据篇

    配备摄像头的无人机(或通用无人机)已被快速部署到广泛的应用领域,包括农业、航空摄影、快速交付和监视。因此,从这些平台上收集的视觉数据的自动理解要求越来越高,这使得计算机视觉与无人机的关系越来越密切。我们很高兴为各种重要的计算机视觉任务展示一个大

    2024年02月04日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包