torch.nn.Linear详解

这篇具有很好参考价值的文章主要介绍了torch.nn.Linear详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在学习transformer时,遇到过非常频繁的nn.Linear()函数,这里对nn.Linear进行一个详解。
参考:https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html

1. nn.Linear的原理:

从名称就可以看出来,nn.Linear表示的是线性变换,原型就是初级数学里学到的线性函数:y=kx+b
不过在深度学习中,变量都是多维张量,乘法就是矩阵乘法,加法就是矩阵加法,因此nn.Linear()运行的真正的计算就是:

output = weight @ input + bias

@: 在python中代表矩阵乘法

input: 表示输入的Tensor,可以有多个维度

weights: 表示可学习的权重,shape=(output_feature,in_feature)

bias: 表示科学习的偏置,shape=(output_feature)

in_feature: nn.Linear 初始化的第一个参数,即输入Tensor最后一维的通道数

out_feature: nn.Linear 初始化的第二个参数,即返回Tensor最后一维的通道数

output: 表示输入的Tensor,可以有多个维度

2. nn.Linear的使用:

常用头文件:import torch.nn as nn

nn.Linear()的初始化:

nn.Linear(in_feature,out_feature,bias)

in_feature: int型, 在forward中输入Tensor最后一维的通道数

out_feature: int型, 在forward中输出Tensor最后一维的通道数

bias: bool型, Linear线性变换中是否添加bias偏置

nn.Linear()的执行:(即执行forward函数)

out=nn.Linear(input)

input: 表示输入的Tensor,可以有多个维度
output: 表示输入的Tensor,可以有多个维度

举例:

2维 Tensor

m = nn.Linear(20, 40)
input = torch.randn(128, 20)
output = m(input)
print(output.size())  # [(128,40])

4维 Tensor:文章来源地址https://www.toymoban.com/news/detail-407419.html

m = nn.Linear(128, 64)
input = torch.randn(512, 3,128,128)
output = m(input)
print(output.size())  # [(512, 3,128,64))

3. nn.Linear的源码定义:

import math
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn.parameter import Parameter, UninitializedParameter
from  torch.nn import functional as F
from  torch.nn import init
# from .lazy import LazyModuleMixin

class myLinear(nn.Module):
    r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`

    This module supports :ref:`TensorFloat32<tf32_on_ampere>`.

    Args:
        in_features: size of each input sample
        out_features: size of each output sample
        bias: If set to ``False``, the layer will not learn an additive bias.
            Default: ``True``

    Shape:
        - Input: :math:`(*, H_{in})` where :math:`*` means any number of
          dimensions including none and :math:`H_{in} = \text{in\_features}`.
        - Output: :math:`(*, H_{out})` where all but the last dimension
          are the same shape as the input and :math:`H_{out} = \text{out\_features}`.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in\_features})`. The values are
            initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
                :math:`k = \frac{1}{\text{in\_features}}`

    Examples::

        >>> m = nn.Linear(20, 30)
        >>> input = torch.randn(128, 20)
        >>> output = m(input)
        >>> print(output.size())
        torch.Size([128, 30])
    """
    __constants__ = ['in_features', 'out_features']
    in_features: int
    out_features: int
    weight: Tensor

    def __init__(self, in_features: int, out_features: int, bias: bool = True,
                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(myLinear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs))
        if bias:
            self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self) -> None:
        # Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
        # uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see
        # https://github.com/pytorch/pytorch/issues/57109
        print("333")

        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
            init.uniform_(self.bias, -bound, bound)

    def forward(self, input: Tensor) -> Tensor:
        print("111")
        print("self.weight.shape=(", )
        return F.linear(input, self.weight, self.bias)

    def extra_repr(self) -> str:
        print("www")

        return 'in_features={}, out_features={}, bias={}'.format(
            self.in_features, self.out_features, self.bias is not None
        )


# m = myLinear(20, 40)
# input = torch.randn(128, 40, 20)
# output = m(input)
# print(output.size())

m = myLinear(128, 64)
input = torch.randn(512, 3,128,128)
output = m(input)
print(output.size())  # [(512, 3,128,64))

4. nn.Linear的官方源码:

import math

import torch
from torch import Tensor
from torch.nn.parameter import Parameter, UninitializedParameter
from .. import functional as F
from .. import init
from .module import Module
from .lazy import LazyModuleMixin


class Identity(Module):
    r"""A placeholder identity operator that is argument-insensitive.

    Args:
        args: any argument (unused)
        kwargs: any keyword argument (unused)

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    Examples::

        >>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False)
        >>> input = torch.randn(128, 20)
        >>> output = m(input)
        >>> print(output.size())
        torch.Size([128, 20])

    """
    def __init__(self, *args, **kwargs):
        super(Identity, self).__init__()

    def forward(self, input: Tensor) -> Tensor:
        return input


class Linear(Module):
    r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`

    This module supports :ref:`TensorFloat32<tf32_on_ampere>`.

    Args:
        in_features: size of each input sample
        out_features: size of each output sample
        bias: If set to ``False``, the layer will not learn an additive bias.
            Default: ``True``

    Shape:
        - Input: :math:`(*, H_{in})` where :math:`*` means any number of
          dimensions including none and :math:`H_{in} = \text{in\_features}`.
        - Output: :math:`(*, H_{out})` where all but the last dimension
          are the same shape as the input and :math:`H_{out} = \text{out\_features}`.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in\_features})`. The values are
            initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
                :math:`k = \frac{1}{\text{in\_features}}`

    Examples::

        >>> m = nn.Linear(20, 30)
        >>> input = torch.randn(128, 20)
        >>> output = m(input)
        >>> print(output.size())
        torch.Size([128, 30])
    """
    __constants__ = ['in_features', 'out_features']
    in_features: int
    out_features: int
    weight: Tensor

    def __init__(self, in_features: int, out_features: int, bias: bool = True,
                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(Linear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs))
        if bias:
            self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self) -> None:
        # Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
        # uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see
        # https://github.com/pytorch/pytorch/issues/57109
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
            init.uniform_(self.bias, -bound, bound)

    def forward(self, input: Tensor) -> Tensor:
        return F.linear(input, self.weight, self.bias)

    def extra_repr(self) -> str:
        return 'in_features={}, out_features={}, bias={}'.format(
            self.in_features, self.out_features, self.bias is not None
        )


# This class exists solely to avoid triggering an obscure error when scripting
# an improperly quantized attention layer. See this issue for details:
# https://github.com/pytorch/pytorch/issues/58969
# TODO: fail fast on quantization API usage error, then remove this class
# and replace uses of it with plain Linear
class NonDynamicallyQuantizableLinear(Linear):
    def __init__(self, in_features: int, out_features: int, bias: bool = True,
                 device=None, dtype=None) -> None:
        super().__init__(in_features, out_features, bias=bias,
                         device=device, dtype=dtype)



[docs]class Bilinear(Module):
    r"""Applies a bilinear transformation to the incoming data:
    :math:`y = x_1^T A x_2 + b`

    Args:
        in1_features: size of each first input sample
        in2_features: size of each second input sample
        out_features: size of each output sample
        bias: If set to False, the layer will not learn an additive bias.
            Default: ``True``

    Shape:
        - Input1: :math:`(*, H_{in1})` where :math:`H_{in1}=\text{in1\_features}` and
          :math:`*` means any number of additional dimensions including none. All but the last dimension
          of the inputs should be the same.
        - Input2: :math:`(*, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`.
        - Output: :math:`(*, H_{out})` where :math:`H_{out}=\text{out\_features}`
          and all but the last dimension are the same shape as the input.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in1\_features}, \text{in2\_features})`.
            The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in1\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
                :math:`k = \frac{1}{\text{in1\_features}}`

    Examples::

        >>> m = nn.Bilinear(20, 30, 40)
        >>> input1 = torch.randn(128, 20)
        >>> input2 = torch.randn(128, 30)
        >>> output = m(input1, input2)
        >>> print(output.size())
        torch.Size([128, 40])
    """
    __constants__ = ['in1_features', 'in2_features', 'out_features']
    in1_features: int
    in2_features: int
    out_features: int
    weight: Tensor

    def __init__(self, in1_features: int, in2_features: int, out_features: int, bias: bool = True,
                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(Bilinear, self).__init__()
        self.in1_features = in1_features
        self.in2_features = in2_features
        self.out_features = out_features
        self.weight = Parameter(torch.empty((out_features, in1_features, in2_features), **factory_kwargs))

        if bias:
            self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self) -> None:
        bound = 1 / math.sqrt(self.weight.size(1))
        init.uniform_(self.weight, -bound, bound)
        if self.bias is not None:
            init.uniform_(self.bias, -bound, bound)

    def forward(self, input1: Tensor, input2: Tensor) -> Tensor:
        return F.bilinear(input1, input2, self.weight, self.bias)

    def extra_repr(self) -> str:
        return 'in1_features={}, in2_features={}, out_features={}, bias={}'.format(
            self.in1_features, self.in2_features, self.out_features, self.bias is not None
        )



class LazyLinear(LazyModuleMixin, Linear):
    r"""A :class:`torch.nn.Linear` module where `in_features` is inferred.

    In this module, the `weight` and `bias` are of :class:`torch.nn.UninitializedParameter`
    class. They will be initialized after the first call to ``forward`` is done and the
    module will become a regular :class:`torch.nn.Linear` module. The ``in_features`` argument
    of the :class:`Linear` is inferred from the ``input.shape[-1]``.

    Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
    on lazy modules and their limitations.

    Args:
        out_features: size of each output sample
        bias: If set to ``False``, the layer will not learn an additive bias.
            Default: ``True``

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in\_features})`. The values are
            initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
                :math:`k = \frac{1}{\text{in\_features}}`


    """

    cls_to_become = Linear  # type: ignore[assignment]
    weight: UninitializedParameter
    bias: UninitializedParameter  # type: ignore[assignment]

    def __init__(self, out_features: int, bias: bool = True,
                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        # bias is hardcoded to False to avoid creating tensor
        # that will soon be overwritten.
        super().__init__(0, 0, False)
        self.weight = UninitializedParameter(**factory_kwargs)
        self.out_features = out_features
        if bias:
            self.bias = UninitializedParameter(**factory_kwargs)

    def reset_parameters(self) -> None:
        if not self.has_uninitialized_params() and self.in_features != 0:
            super().reset_parameters()

    def initialize_parameters(self, input) -> None:  # type: ignore[override]
        if self.has_uninitialized_params():
            with torch.no_grad():
                self.in_features = input.shape[-1]
                self.weight.materialize((self.out_features, self.in_features))
                if self.bias is not None:
                    self.bias.materialize((self.out_features,))
                self.reset_parameters()
# TODO: PartialLinear - maybe in sparse?

到了这里,关于torch.nn.Linear详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Pytorch学习:神经网络模块torch.nn.Module和torch.nn.Sequential

    官方文档:torch.nn.Module CLASS torch.nn.Module(*args, **kwargs) 所有神经网络模块的基类。 您的模型也应该对此类进行子类化。 模块还可以包含其他模块,允许将它们嵌套在树结构中。您可以将子模块分配为常规属性: training(bool) -布尔值表示此模块是处于训练模式还是评估模式。

    2024年02月10日
    浏览(43)
  • 机器学习&&深度学习——torch.nn模块

    torch.nn模块包含着torch已经准备好的层,方便使用者调用构建网络。 卷积就是 输入和卷积核之间的内积运算 ,如下图: 容易发现,卷积神经网络中通过输入卷积核来进行卷积操作,使输入单元(图像或特征映射)和输出单元(特征映射)之间的连接时稀疏的,能够减少需要

    2024年02月15日
    浏览(42)
  • Pytorch:torch.nn.Module.apply用法详解

    torch.nn.Module.apply 是 PyTorch 中用于递归地应用函数到模型的所有子模块的方法。它允许对模型中的每个子模块进行操作,比如初始化权重、改变参数类型等。 以下是关于 torch.nn.Module.apply 的示例: 1. 语法 Module:PyTorch 中的神经网络模块,例如 torch.nn.Module 的子类。 fn:要应用到

    2024年01月15日
    浏览(51)
  • 详解Pytorch中的torch.nn.MSELoss函,包括对每个参数的分析!

    一、函数介绍 Pytorch中MSELoss函数的接口声明如下,具体网址可以点这里。 torch.nn.MSELoss(size_average=None, reduce=None, reduction=‘mean’) 该函数 默认用于计算两个输入对应元素差值平方和的均值 。具体地,在深度学习中,可以使用该函数用来计算两个特征图的相似性。 二、使用方式

    2023年04月19日
    浏览(46)
  • nn.Sequential、nn.Linear、nn.ReLU()函数

    nn.Sequential 是 PyTorch 中的一个容器模块,用于按照顺序组合多个神经网络层(如线性层、激活函数、池化层等)。这个容器允许你将各种层按照指定的顺序串联在一起,构建一个神经网络模型。nn.Sequential() 可以允许将整个容器视为单个模块(即相当于把多个模块封装成一个模

    2024年02月07日
    浏览(41)
  • 详解torch.nn.utils.clip_grad_norm_ 的使用与原理

    本文是对梯度剪裁: torch.nn.utils.clip_grad_norm_()文章的补充。所以可以先参考这篇文章 从上面文章可以看到, clip_grad_norm 最后就是对所有的梯度乘以一个 clip_coef ,而且乘的前提是 clip_coef一定是小于1的 ,所以,按照这个情况: clip_grad_norm 只解决梯度爆炸问题,不解决梯度消失

    2023年04月08日
    浏览(37)
  • Pytorch学习笔记(5):torch.nn---网络层介绍(卷积层、池化层、线性层、激活函数层)

     一、卷积层—Convolution Layers  1.1 1d / 2d / 3d卷积 1.2 卷积—nn.Conv2d() nn.Conv2d 1.3 转置卷积—nn.ConvTranspose nn.ConvTranspose2d  二、池化层—Pooling Layer (1)nn.MaxPool2d (2)nn.AvgPool2d (3)nn.MaxUnpool2d  三、线性层—Linear Layer  nn.Linear  四、激活函数层—Activate Layer (1)nn.Sigmoid  (

    2024年01月20日
    浏览(44)
  • 关于transformer 学习、torch_geometric

    1、 nn.TransformerEncoder nn.TransformerEncoder 是 PyTorch 中的一个模块,用于构建 Transformer 模型中的编码器。Transformer 是一种强大的序列到序列模型,广泛应用于自然语言处理的各个领域。 在 nn.TransformerEncoder 中,我们可以定义多个 nn.TransformerEncoderLayer ,每个 nn.TransformerEncoderLayer 包含

    2023年04月16日
    浏览(34)
  • 【torch.nn.PixelShuffle】和 【torch.nn.UnpixelShuffle】

    PixelShuffle是一种上采样方法,它将形状为 ( ∗ , C × r 2 , H , W ) (∗, Ctimes r^2, H, W) ( ∗ , C × r 2 , H , W ) 的张量重新排列转换为形状为 ( ∗ , C , H × r , W × r ) (∗, C, Htimes r, Wtimes r) ( ∗ , C , H × r , W × r ) 的张量: 举个例子 输入的张量大小是 (1,8,2,3) ,PixelShuffle的 缩放因子是

    2024年02月13日
    浏览(41)
  • 【torch.nn.Fold】和【torch.nn.Unfold】

    torhc.nn.Unfold的功能: 从一个batch的样本中,提取出滑动的局部区域块 patch (也就是卷积操作中的提取kernel filter对应的滑动窗口)把它按照顺序展开,得到的特征数就是 通道数*卷积核的宽*卷积核的高 , 下图中的 L 就是滑动完成后总的 patch的个数 。 举个例子: 下图中的红框

    2024年02月13日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包