Python多线程与GIL锁

这篇具有很好参考价值的文章主要介绍了Python多线程与GIL锁。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Python多线程与GIL锁

python多线程

Python的多线程编程可以在单个进程内创建多个线程来同时执行多个任务,从而提高程序的效率和性能。Python的多线程实现依赖于操作系统的线程调度器,并且受到全局解释器锁(GIL)的限制,因此在某些情况下,多线程并不能真正实现并行执行。

import threading

def print_numbers():
    for i in range(1, 6):
        print(i)

thread1 = threading.Thread(target=print_numbers)
thread2 = threading.Thread(target=print_numbers)

thread1.start()
thread2.start()

thread1.join()
thread2.join()

print("Done")

上述代码创建了两个线程分别同时去打印1-5数字,但是即使有多个cpu,同一时刻也只能打印一个数字!why?

​ 这是由于Python中的全局解释器锁(GIL)导致的。GIL是一种机制,用于确保在任何给定时间内,只有一个线程在Python解释器中执行字节码。这意味着无论有多少个CPU核心,每个线程都无法并行执行Python字节码。因此在执行CPU密集型任务时,多个线程之间的执行是交替进行的,而不是并行的。因此对于CPU任务,python的多线程是假的。而对于IO任务,确实是真正的多线程。

GIL锁

GIL的存在主要是为了防止Python解释器中的数据结构被多个线程同时修改,导致数据结构出现不一致的情况。通过限制同一时刻只有一个线程能够执行Python字节码,GIL可以确保Python解释器中的数据结构不会被多个线程同时修改,从而保证线程安全。

IO任务

I/O资源(Input/Output resources),是指计算机系统中用于输入输出数据的设备和接口,例如硬盘、网络接口、键盘、鼠标等。在计算机编程中,I/O操作指的是程序和外部设备之间进行的数据传输和交互,如读取文件、网络传输,爬虫等。I/O操作通常是非常耗时的,因为它们需要等待外部设备响应或者等待数据的读取。

这些IO任务通常只占用内存和网络,不占用CPU资源,所以也不占用python解释器,因此如果是IO密集型任务,python的多线程优势才能体现出来,而CPU密集型任务python的多线程效率无法有效提升。

破解GIL锁的限制

如果需要处理CPU密集型任务,可以考虑使用多进程编程,因为在多进程中,每个进程都有自己的解释器和内存空间,从而避免了GIL的限制。可以充分利用多核处理器(必须是真正的多核处理器才能体现,否则还是单进程)的优势。

python多进程

使用Python多进程编程的一般步骤如下:

  1. 导入multiprocessing模块,创建进程池对象。可以通过Pool()函数创建进程池对象,指定最大进程数。
  2. 定义需要执行的任务函数。这个函数应该能够接受任务参数,处理任务,返回任务结果。
  3. 调用进程池对象的map()函数,传入任务函数和任务参数。该函数会将任务参数分配给进程池中的进程执行,并返回任务结果列表。
  4. 处理任务结果。根据任务函数的返回值,对任务结果进行处理。可以使用Python中的其他模块,如pandas、numpy等进行数据处理或结果可视化。

需要注意的是,在Python中使用多进程编程时,进程之间的通信和同步是需要考虑的问题。Python中的multiprocessing模块提供了一些同步原语,如Lock、Semaphore等,用于控制进程之间的访问。此外,也可以使用Python中的Queue模块实现进程之间的通信。

代码示例:文章来源地址https://www.toymoban.com/news/detail-407731.html

import multiprocessing

def worker(num):
    """任务函数"""
    print('Worker %d is running' % num)
    return num**2

if __name__ == '__main__':
    # 创建进程池对象
    pool = multiprocessing.Pool(processes=4)
    # 任务参数列表
    nums = [1, 2, 3, 4, 5]
    # 执行任务并获取结果
    results = pool.map(worker, nums)
    print(results)

python多进程与多线程的结合

每个进程用多个线程执行,这样可以在每个进程内部实现并行处理IO任务,同时也可以充分利用多核处理器的优势。

代码示例:

import multiprocessing
import threading

def worker(num):
    """线程函数,用于处理任务"""
    print(f"Worker {num} is running...")

def main():
    """主函数,创建多个进程和线程"""
    # 创建3个进程
    processes = []
    for i in range(3):
        p = multiprocessing.Process(target=process_worker, args=(i,))
        processes.append(p)
        p.start()

    # 在每个进程内部创建2个线程
    for p in processes:
        for i in range(2):
            t = threading.Thread(target=worker, args=(i,))
            t.start()

if __name__ == '__main__':
    main()

到了这里,关于Python多线程与GIL锁的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 创建 Python 脚本以在 Linux 中打开新终端并运行命令

    Linux 操作系统以其程序员广泛使用的多功能终端而闻名。 但在某些情况下,我们会发现自己重复编写同一组语法,这可能既无聊又耗时。 你有没有想过是否有一种方法可以在文件中预先编写 Linux 命令,然后在终端中立即执行? 是的! 你可以。 您可以在文件中编写预先编写

    2024年02月04日
    浏览(49)
  • Python 潮流周刊#24:no-GIL 提案正式被采纳了!

    你好,我是猫哥。这里每周分享优质的 Python、AI 及通用技术内容,大部分为英文。标题取自其中两则分享,不代表全部内容都是该主题,特此声明。 微信 | 博客 | 邮件 | Github | Telegram | Twitter 本周刊的源文件归档在 Github 上,已收获 777 star 好评,如果你也喜欢本周刊,就请给

    2024年02月08日
    浏览(59)
  • Python小姿势 - Python的多线程编程

    Python的多线程编程 Python的多线程编程提供了一个非常简单的方法来让一个Python程序同时运行多个任务。这个方法通过创建新的线程来实现,线程可以被视为一个单独的执行流程。 为了创建一个新线程,我们需要使用Python的_thread模块中的start_new_thread()函数。它需要两个参数:

    2024年02月04日
    浏览(39)
  • python多线程编程:如何优雅地关闭线程

    在并发编程中,我们可能会创建新线程,并在其中运行任务,可能由于一些原因,决定停止该线程。例如: 不再需要线程任务的结果了。 应用程序正在关闭。 线程执行可能已经出现了异常 关于python多线程编程知识,请参阅由浅入深掌握Python多线程编程 Threading 模块的 Threa

    2023年04月18日
    浏览(40)
  • Python小姿势 - #### Python技术博客:Python多线程编程

    Python技术博客:Python多线程编程 你好,这里是自媒体技术博主Aurora,今天我想分享一下Python多线程编程。 首先,什么是多线程编程?多线程编程是一种让多个线程同时执行的编程方式,它可以让程序的执行更加高效。 如果我们要编写一个多线程程序,首先要导入threading模块

    2024年02月04日
    浏览(39)
  • 【Python】多线程编程 ① ( 线程相关概念 | 进程 | 线程 | 协程 / 纤程 | 管程 )

    进程 与 操作系统 : 进程 是 操作系统 中 能够独立运行的单元 , 是 操作系统 对 正在运行的 应用程序 的 抽象结构 描述 ; 操作系统 中 运行的每个 应用程序 就是一个进程 ; 一个操作系统中可以运行 多个 进程 ; 每个 应用程序 都会被 操作系统 分配一个 进程 ID ; 多个进程之间

    2024年02月15日
    浏览(38)
  • python-16-线程池和进程池python并发编程

    Python ThreadPoolExecutor线程池 线程池的基本原理是什么? 利用Python快速实现一个线程池,非常简单 Python并发编程专题 一、为什么要引入并发编程? 场景1:一个网络爬虫,按顺序爬取花了1小时,采用并发下载减少到20分钟! 场景2:一个APP应用,优化前每次打开页面需要3秒,采

    2024年02月04日
    浏览(39)
  • Python之并发编程多线程理论

    在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 线程顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程 车间负责把资源整合到一起,是一个资源单位,而一个车间内至少有一个流水线 流水线的

    2024年02月07日
    浏览(40)
  • Python多线程编程深度探索:从入门到实战

    title: Python多线程编程深度探索:从入门到实战 date: 2024/4/28 18:57:17 updated: 2024/4/28 18:57:17 categories: 后端开发 tags: 多线程 并发编程 线程安全 Python 异步IO 性能优化 实战项目 Python是一种高级、通用、解释型的编程语言,由Guido van Rossum于1991年创建。Python以其简洁、易读的语法而闻

    2024年04月28日
    浏览(46)
  • Python渗透测试编程基础——线程、进程与协程

    目录  一、进程与线程的概念 1.进程 2.线程 3.进程和线程的关系 4.任务执行方式 二、Python中的Threading模块 1.线程模块介绍 2.Threading介绍 (1)方法和属性 (2)类方法 三、线程简单编写 1.流程 2.创建线程 (1)方法一 (2)方法二 3.例子 四、守护线程 五、线程同步技术 1.线程

    2024年02月01日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包