损失函数大致可以分成两类:回归(Regression)和分类(Classification)。
回归模型中的三种损失函数包括:
- 均方误差(Mean Square Error,MSE)
- 平均绝对误差(Mean Absolute Error,MAE)
- Huber Loss。
1. 损失函数
① Loss损失函数一方面计算实际输出和目标之间的差距。
② Loss损失函数另一方面为我们更新输出提供一定的依据。
2. L1loss损失函数
① L1loss数学公式如下图所示,例子如下下图所示。
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss = L1Loss() # 默认为 maen
result = loss(inputs,targets)
print(result) #tensor(0.6667)
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss = L1Loss(reduction='sum') # 修改为sum,三个值的差值,然后取和
result = loss(inputs,targets)
print(result) #tensor(2.)
3. 均方误差(Mean Square Error,MSE)损失函数
均方误差指的就是模型预测值 f(x) 与样本真实值 y 之间距离平方的平均值。其中,yi 和 f(xi) 分别表示第 i 个样本的真实值和预测值,m 为样本个数。
为简化讨论,忽略下标 i,m = 1,以 y-f(x) 为横坐标,MSE 为纵坐标,绘制其损失函数的图形:
MSE 曲线的特点是光滑连续、可导,便于使用梯度下降算法,是比较常用的一种损失函数。而且,MSE 随着误差的减小,梯度也在减小,这有利于函数的收敛,即使固定学习因子,函数也能较快取得最小值。
平方误差有个特性,就是当 yi 与 f(xi) 的差值大于 1 时,会增大其误差;当 yi 与 f(xi) 的差值小于 1 时,会减小其误差。这是由平方的特性决定的。也就是说, MSE 会对误差较大(>1)的情况给予更大的惩罚,对误差较小(<1)的情况给予更小的惩罚。从训练的角度来看,模型会更加偏向于惩罚较大的点,赋予其更大的权重。
如果样本中存在离群点,MSE 会给离群点赋予更高的权重,但是却是以牺牲其他正常数据点的预测效果为代价,这最终会降低模型的整体性能。我们来看一下使用 MSE 解决含有离群点的回归模型。
import torch
from torch.nn import L1Loss
from torch import nn
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss_mse = nn.MSELoss()
result_mse = loss_mse(inputs,targets)
print(result_mse) #tensor(1.3333)
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(1, 20, 40)
y = x + [np.random.choice(4) for _ in range(40)]
y[-5:] -= 8
X = np.vstack((np.ones_like(x),x)) # 引入常数项 1
m = X.shape[1]
# 参数初始化
W = np.zeros((1,2))
# 迭代训练
num_iter = 20
lr = 0.01
J = []
for i in range(num_iter):
y_pred = W.dot(X)
loss = 1/(2*m) * np.sum((y-y_pred)**2)
J.append(loss)
W = W + lr * 1/m * (y-y_pred).dot(X.T)
# 作图
y1 = W[0,0] + W[0,1]*1
y2 = W[0,0] + W[0,1]*20
plt.scatter(x, y)
plt.plot([1,20],[y1,y2])
plt.show()
可见,使用 MSE 损失函数,受离群点的影响较大,虽然样本中只有 5 个离群点,但是拟合的直线还是比较偏向于离群点。这往往是我们不希望看到的。
4.平均绝对误差(Mean Absolute Error,MAE)
平均绝对误差指的就是模型预测值 f(x) 与样本真实值 y 之间距离的平均值。
为简化讨论,忽略下标 i,m = 1,以 y-f(x) 为横坐标,MAE 为纵坐标,绘制其损失函数的图形
直观上来看,MAE 的曲线呈 V 字型,连续但在 y-f(x)=0 处不可导,计算机求解导数比较困难。而且 MAE 大部分情况下梯度都是相等的,这意味着即使对于小的损失值,其梯度也是大的。这不利于函数的收敛和模型的学习。
值得一提的是,MAE 相比 MSE 有个优点就是 MAE 对离群点不那么敏感,更有包容性。因为 MAE 计算的是误差 y-f(x) 的绝对值,无论是 y-f(x)>1 还是 y-f(x)<1,没有平方项的作用,惩罚力度都是一样的,所占权重一样。针对 MSE 中的例子,我们来使用 MAE 进行求解,看下拟合直线有什么不同。
X = np.vstack((np.ones_like(x),x)) # 引入常数项 1
m = X.shape[1]
# 参数初始化
W = np.zeros((1,2))
# 迭代训练
num_iter = 20
lr = 0.01
J = []
for i in range(num_iter):
y_pred = W.dot(X)
loss = 1/m * np.sum(np.abs(y-y_pred))
J.append(loss)
mask = (y-y_pred).copy()
mask[y-y_pred > 0] = 1
mask[mask <= 0] = -1
W = W + lr * 1/m * mask.dot(X.T)
# 作图
y1 = W[0,0] + W[0,1]*1
y2 = W[0,0] + W[0,1]*20
plt.scatter(x, y)
plt.plot([1,20],[y1,y2],'r--')
plt.xlabel('x')
plt.ylabel('y')
plt.title('MAE')
plt.show()
显然,使用 MAE 损失函数,受离群点的影响较小,拟合直线能够较好地表征正常数据的分布情况。这一点,MAE 要优于 MSE。二者的对比图如下:
选择 MSE 还是 MAE 呢?
实际应用中,我们应该选择 MSE 还是 MAE 呢?从计算机求解梯度的复杂度来说,MSE 要优于 MAE,而且梯度也是动态变化的,能较快准确达到收敛。
- 但是从离群点角度来看,如果离群点是实际数据或重要数据,而且是应该被检测到的异常值,那么我们应该使用MSE。
- 另一方面,离群点仅仅代表数据损坏或者错误采样,无须给予过多关注,那么我们应该选择MAE作为损失。
5.Huber Loss
既然 MSE 和 MAE 各有优点和缺点,那么有没有一种激活函数能同时消除二者的缺点,集合二者的优点呢?答案是有的。Huber Loss 就具备这样的优点,其公式如下:
Huber Loss 是对二者的综合,包含了一个超参数 δ。δ 值的大小决定了 Huber Loss 对 MSE 和 MAE 的侧重性,当 |y−f(x)| ≤ δ 时,变为 MSE;当 |y−f(x)| > δ 时,则变成类似于 MAE,因此 Huber Loss 同时具备了 MSE 和 MAE 的优点,减小了对离群点的敏感度问题,实现了处处可导的功能。
通常来说,超参数 δ 可以通过交叉验证选取最佳值。下面,分别取 δ = 0.1、δ = 10,绘制相应的 Huber Loss,如下图所示:
Huber Loss 在 |y−f(x)| > δ 时,梯度一直近似为 δ,能够保证模型以一个较快的速度更新参数。当 |y−f(x)| ≤ δ 时,梯度逐渐减小,能够保证模型更精确地得到全局最优值。因此,Huber Loss 同时具备了前两种损失函数的优点。
下面,我们用 Huber Loss 来解决同样的例子。
X = np.vstack((np.ones_like(x),x)) # 引入常数项 1
m = X.shape[1]
# 参数初始化
W = np.zeros((1,2))
# 迭代训练
num_iter = 20
lr = 0.01
delta = 2
J = []
for i in range(num_iter):
y_pred = W.dot(X)
loss = 1/m * np.sum(np.abs(y-y_pred))
J.append(loss)
mask = (y-y_pred).copy()
mask[y-y_pred > delta] = delta
mask[mask < -delta] = -delta
W = W + lr * 1/m * mask.dot(X.T)
# 作图
y1 = W[0,0] + W[0,1]*1
y2 = W[0,0] + W[0,1]*20
plt.scatter(x, y)
plt.plot([1,20],[y1,y2],'r--')
plt.xlabel('x')
plt.ylabel('y')
plt.title('MAE')
plt.show()
可见,使用 Huber Loss 作为激活函数,对离群点仍然有很好的抗干扰性,这一点比 MSE 强。另外,我们把这三种损失函数对应的 Loss 随着迭代次数变化的趋势绘制出来:
对比发现,MSE 的 Loss 下降得最快,MAE 的 Loss 下降得最慢,Huber Loss 下降速度介于 MSE 和 MAE 之间。也就是说,Huber Loss 弥补了此例中 MAE 的 Loss 下降速度慢的问题,使得优化速度接近 MSE。
文章来源地址https://www.toymoban.com/news/detail-407822.html
最后,我们把以上介绍的回归问题中的三种损失函数全部绘制在一张图上。
6.交叉熵损失函数
import torch
from torch.nn import L1Loss
from torch import nn
x = torch.tensor([0.1,0.2,0.3])
y = torch.tensor([1])
x = torch.reshape(x,(1,3)) # 1的 batch_size,有三类
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x,y)
print(result_cross) #tensor(1.1019)
文章来源:https://www.toymoban.com/news/detail-407822.html
搭建神经网络
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=1,drop_last=True)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
Conv2d(3,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,64,5,padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024,64),
Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
tudui = Tudui()
for data in dataloader:
imgs, targets = data
outputs = tudui(imgs)
print(outputs)
print(targets)
数据集计算损失函数
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
Conv2d(3,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,64,5,padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024,64),
Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
loss = nn.CrossEntropyLoss() # 交叉熵
tudui = Tudui()
for data in dataloader:
imgs, targets = data
outputs = tudui(imgs)
result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距
print(result_loss)
损失函数反向传播
反向传播通过梯度来更新参数,使得loss损失最小
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
Conv2d(3,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,64,5,padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024,64),
Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
loss = nn.CrossEntropyLoss() # 交叉熵
tudui = Tudui()
for data in dataloader:
imgs, targets = data
outputs = tudui(imgs)
result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距
result_loss.backward() # 计算出来的 loss 值有 backward 方法属性,反向传播来计算每个节点的更新的参数。这里查看网络的属性 grad 梯度属性刚开始没有,反向传播计算出来后才有,后面优化器会利用梯度优化网络参数。
print("ok")
反向传播后出现grad梯度属性,后面优化器会利用梯度来优化网络参数。
到了这里,关于【09】损失函数与反向传播的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!