yolov5s-6.0网络模型结构图

这篇具有很好参考价值的文章主要介绍了yolov5s-6.0网络模型结构图。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

因为在6.0上做的了一些东西,所以将6.0得网络模型画了出来,之前也画过5.0的网络模型,有兴趣的小伙伴可以看下。

yolov5s-5.0网络模型结构图_zhangdaoliang1的博客-CSDN博客_yolov5s模型结构看了很多yolov5方面的东西,最近需要yolov5得模型结构图,但是网上的最多的是大白老师的,但是大白老师的yolov5得模型结构图不知道是哪个版本得,肯定不是5.0和6.0版本得。参考了大白老师得模型结构图和其他大佬的模型结构图,以及参考了yolov5得onnx。画出了以下得结构图,初次画不知道有些地方是否对不对,如果有错误,请大家指出。。。这个模型结构图是用思维导图画出来得。这里面有几个点可能与其他人画的不一样。1、5.0采用的激活函数是SiLU(),不再是LeaKyReLU(),所以这里https://blog.csdn.net/zhangdaoliang1/article/details/122301031?spm=1001.2014.3001.5502

6.0的和5.0的相差不是很大,但是也有几个点不同。

第一张的原图:

链接:https://pan.baidu.com/s/1eSALy-Oe48JrHCS2s6mNyw 
提取码:lbnq

6.0:

yolov5s-6.0网络模型结构图

 

2022-02-26修改:

画了个PPT版本,方便大家修改。

PPT版本:

yolov5s-6.0网络模型结构图

 PPT下载链接:

5.0和6.0在一起:

链接:https://pan.baidu.com/s/1C8gXz21Xuy03TxwSeXcdmA 
提取码:yolo

原图下载链接:

链接:https://pan.baidu.com/s/194y9UUX5QPGWwOQGlOUVog 
提取码:ujia

不同点:

1、backbone中:6.0版本是CSP1_X+SPPF结构,而在5.0中是SPP+CSP2_X的结构

具体的大家可以看下netron:如下所示

yolov5s-6.0网络模型结构图文章来源地址https://www.toymoban.com/news/detail-407846.html

到了这里,关于yolov5s-6.0网络模型结构图的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOv5网络模型的结构原理讲解(全)

    YOLOv5有几种不同的架构,各网络模型算法性能分别如下: YOLOv5是一种目标检测算法,其模型结构主要包括以下组成部分: 输入端:YOLOv5的Head网络由3个不同的输出层组成,分别负责检测大中小尺度的目标。 Backbone网络:YOLOv5使用CSPDarknet53作为其主干网络,其具有较强的特征提

    2024年02月05日
    浏览(32)
  • 跑通官方的yolov7-tiny实验记录(yolov7-tiny可作为yolov5s的对比实验网络)

    官方YOLOv7 项目地址:https://github.com/WongKinYiu/yolov7 如果想设置早停机制,可以参考这个链接:yolov7自动停止(设置patience)且输出最优模型时的PR图(test best.py) 学习 train.py 中的参数含义,可参考手把手调参最新 YOLOv7 模型 训练部分 - 最新版本(二) 学习 detect.py 中的参数含

    2023年04月18日
    浏览(45)
  • YOLOv5 - yolov5s.yaml 文件

    🍨 本文为[🔗365天深度学习训练营学习记录博客 🍦 参考文章:365天深度学习训练营 🍖 原作者:[K同学啊 | 接辅导、项目定制](https://mtyjkh.blog.csdn.net/) 🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45) 基于深度学习的目标检测模型的结构:输入-主干-脖子

    2024年02月06日
    浏览(39)
  • yolov5s.pt下载

    提示:: 参考博客:https://blog.csdn.net/m0_60900621/article/details/127119398 GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch ONNX CoreML TFLite

    2024年02月11日
    浏览(52)
  • yolov5s.yaml 文件解读

    nc: 81 - 表示模型被训练来识别的类别数量为81。 depth_multiple: 0.33 - 模型深度的倍数。这个参数用于调整模型中层的深度。值为0.33意味着每个层的深度为原始设计深度的33%,通常用于减小模型大小和计算需求,但可能会牺牲精度。 width_multiple: 0.50 - 表示层通道的倍数。这个参数

    2024年01月21日
    浏览(39)
  • 【YOLOv8模型网络结构图理解】

    YOLOv8的配置文件定义了模型的关键参数和结构,包括类别数、模型尺寸、骨干(backbone)和头部(head)结构。这些配置决定了模型的性能和复杂性。 下面是YOLOv8的配置文件和参数的解释: Backbone主干网络 是模型的基础,负责从输入图像中提取特征。这些特征是后续网络层进

    2024年03月26日
    浏览(61)
  • 【YOLO系列】YOLOv5、YOLOX、YOOv6、YOLOv7网络模型结构

    【注】: 本文为YOLOv5、YOLOX、YOLOv6、YOLOv7模型结构图,作图软件为drawio。因精力有限暂时不做结构的详细阐述和具体的代码讲解,后续有机会再做补充。如有需要可以查阅其他博主的文章了解学习。 【另】:希望模型结构图可以帮助到有需要的人,如模型中有错误的地方,欢

    2024年02月07日
    浏览(37)
  • 第Y3周:yolov5s.yaml文件解读

    🍨 本文为🔗365天深度学习训练营 中的学习记录博客 🍖 原作者:K同学啊|接辅导、项目定制 ✅本周任务: 将yolov5s网络模型中第4层的C3*2修改为C3*1,第6层的C3*3修改为C3*2。 简单介绍: YOLOv5配置了4种不同大小的网络模型,分别是 YOLOv5s 、 YOLOv5m 、 YOLOv5l 、 YOLOv5x ,其中 YO

    2024年02月08日
    浏览(39)
  • YOLOv5源码逐行超详细注释与解读(5)——配置文件yolov5s.yaml

    在YOLOv5中网络结构采用 yaml 作为配置文件,之前我们也介绍过,YOLOv5配置了4种不同大小的网络模型,分别是 YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x ,这几个模型的结构基本一样, 不同的是depth_multiple模型深度和width_multiple模型宽度这两个参数 。 就和我们买衣服的尺码大小排序一样,

    2023年04月16日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包