回归预测 | MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测

这篇具有很好参考价值的文章主要介绍了回归预测 | MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

回归预测 | MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测

效果一览

回归预测 | MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测
回归预测 | MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测
回归预测 | MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测
回归预测 | MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测
回归预测 | MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测
回归预测 | MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测
回归预测 | MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测
回归预测 | MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测
回归预测 | MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测

基本介绍

MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测
GA-LSTM遗传算法优化长短期记忆网络回归预测(Matlab完整程序和数据)
输入6个特征,输出1个,即多输入单输出;
运行环境Matlab2018及以上,运行主程序main即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集;
命令窗口输出RMSEP、MAE、R2、MAPE。

程序设计

  • 完整程序和数据下载方式1(资源处直接下载):MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测
  • 完整程序和数据下载方式2(订阅《LSTM长短期记忆神经网络》专栏,同时可阅读《LSTM长短期记忆神经网络》专栏收录的所有内容,数据订阅后私信我获取):MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测
  • 完整程序和数据下载方式3(订阅《智能学习》专栏,同时获取《智能学习》专栏收录程序6份,数据订阅后私信我获取):MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测
%%  记录最佳参数
Best_pos(1, 2) = round(Best_pos(1, 2));
best_lr = Best_pos(1, 1);
best_hd = Best_pos(1, 2);
best_l2 = Best_pos(1, 3);

%%  建立模型
% ----------------------  修改模型结构时需对应修改fical.m中的模型结构  --------------------------
layers = [
    sequenceInputLayer(f_)            % 输入层
    
    lstmLayer(best_hd)                % LSTM层
    reluLayer                         % Relu激活层
    
    fullyConnectedLayer(outdim)       % 输出回归层
    regressionLayer];
 
%%  参数设置
% ----------------------  修改模型参数时需对应修改fical.m中的模型参数  --------------------------
options = trainingOptions('adam', ...           % Adam 梯度下降算法
         'MaxEpochs', 500, ...                  % 最大训练次数 500
         'InitialLearnRate', best_lr, ...       % 初始学习率 best_lr
         'LearnRateSchedule', 'piecewise', ...  % 学习率下降
         'LearnRateDropFactor', 0.5, ...        % 学习率下降因子 0.1
         'LearnRateDropPeriod', 400, ...        % 经过 400 次训练后 学习率为 best_lr * 0.5
         'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
         'ValidationPatience', Inf, ...         % 关闭验证
         'L2Regularization', best_l2, ...       % 正则化参数
         'Plots', 'training-progress', ...      % 画出曲线
         'Verbose', false);

%%  训练模型
net = trainNetwork(p_train, t_train, layers, options);

%%  仿真验证
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1=double(T_sim1);
T_sim2=double(T_sim2);
%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);
%% 参数初始化
popsize=pop;              %种群规模
lenchrom=dim;              %变量字串长度
fun = fobj;  %适应度函数
pc=0.7;                  %设置交叉概率
pm=0.3;                  %设置变异概率
if(max(size(ub)) == 1)
   ub = ub.*ones(dim,1);
   lb = lb.*ones(dim,1);  
end
maxgen=Max_iter;   % 进化次数  

%种群

%% 产生初始粒子和速度

    %随机产生一个种群
    GApop=initialization(pop, dim, ub, lb);       %随机产生个体
for i=1:popsize
    %计算适应度
    fitness(i)=fun(GApop(i,:));            %染色体的适应度
end

%找最好的染色体
[bestfitness bestindex]=min(fitness);
zbest=GApop(bestindex,:);   %全局最佳
gbest=GApop;                %个体最佳
fitnessgbest=fitness;       %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值

%% 迭代寻优
for i=1:maxgen
        disp(['第',num2str(i),'次迭代'])
        %种群更新 GA选择更新
        GApop=Select2(GApop,fitness,popsize);

        % 交叉操作 GA
        GApop=Cross(pc,lenchrom,GApop,popsize,lb,ub);

        % 变异操作 GA变异
        GApop=Mutation(pm,lenchrom,GApop,popsize,[i maxgen],lb,ub);

        pop=GApop;
        
      for j=1:popsize
        %适应度值
        fitness(j)=fun(pop(j,:));
        %个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j,:) = pop(j,:);
            fitnessgbest(j) = fitness(j);
        end
        
        %群体最优更新
        if fitness(j) < fitnesszbest
            zbest = pop(j,:);
            fitnesszbest = fitness(j);
        end
        
    end
    
    curve(i)=fitnesszbest;     
end
%%  边界数目
Boundary_no= size(ub, 2);

%%  变量数目等于1
if Boundary_no == 1
    Positions = rand(SearchAgents_no, dim) .* (ub - lb) + lb;
end

%% 如果每个变量有不同的上下界
if Boundary_no > 1
    for i = 1 : dim
        ub_i = ub(i);
        lb_i = lb(i);
        Positions(:, i) = rand(SearchAgents_no, 1) .* (ub_i - lb_i) + lb_i;
    end
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718文章来源地址https://www.toymoban.com/news/detail-407887.html

到了这里,关于回归预测 | MATLAB实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包