STM32模拟SPI时序配置读取双路24位模数转换(24bit ADC)芯片ADS1220采样数据
TI公司的双路24位模数转换芯片ADS1220具有比较丰富的模式配置,双路差分输入采样也可以配置为4路单端输入信号采样。有多种参考电压源可选,内部增益(从1倍到128倍)和输出率(可达到2K/s)可配置,模拟电压和数字电路电压可单独设置等等。这里介绍STM32访问和读取ADS1220采样数据的代码实现,采用模拟SPI时序的方式。
市面上有测试用模块:
注意ADS1220内部只有一个ADC采样电路,所以虽然外部可以接两路差分输入源,实际上并不能同时采样,要进行输入通道切换,一个时间只能采样一个输入通道:
STM32电路连接
ADS1220的转换完成指示输出,可以通过单独的管脚/DRDY或者复用管脚DOUT/nDRDY输出,从减少逻辑复杂度考虑,优先采用单独的/DRDY管脚连接,从而DOUT/nDRDY只作为ADS1220数据输出管脚。因此STM32与ADS1220的标准连接为五线,在资源穷巴巴的情况下,可以调整电路和程序,从而实现只需要三线与STM32的连接,这种场景片选/CS始终拉低有效,而采用DOUT/nDRDY作为转换完成指示输出。这里介绍五线连接的代码实现。
ADS1220可以采用外部时钟源或者内部时钟源,一般可采用内部时钟源,需要将CLK管脚和DGND短路,从而上电或复位时,CLK管脚一定时间没有等到外部发来时钟,则会将内部电路切换到内部时钟源供应时钟。
ADS的AVDD和DVDD没有特别的相对大小设置,因此在连接STM32时,可以将AVDD连接到5V,而将DVDD连接到3.3V,从而SPI接口可以直接连接到STM32。需要注意,上电或复位时,芯片内部寄存器所有值置0,对应的参考电压为内部2.048V电压,而不是AVDD电压,可以通过芯片内部寄存器的配置,切换参考电压为AVDD,或者REFP0/REFN0, 其中一对差分信号输入采样通道也可以配置作为参考电压输入通道REFP1/REFN1,从而在应用中,最多可以切换4种参考电压,实现将24位采样能力规格化到不同电压范围内。只采用内部基准2.048V参考电压时,外部REFPx/REFNx可以不接。
上电时,默认为正常模式,单次转换模式,采用通道为AIN0/AIN1, 增益为1,采用内部基准电压2.048V, 输出速率一秒20次。
ADS1220测试电路
ADS1220典型的应用连接到惠斯通电桥,接收差分电压。简单测试可以采用如下方式:
当可调电阻器为10欧姆时,IN+和IN-差分电压为(5/(4700+4700+10))*10 = 5.31mV。可以微调可调电位器的阻值,调整输出差模电压。
ADS1220访问协议
ADS1220 SPI访问在时钟的上升沿输出数据,在时钟的下降沿采样数据。配置为单次转换模式时,发命令启动一次采样,可以读取到一次更新的采样数据。如果配置为连续转换模式,则可以发命令启动一次采样,后续自动进行连续采样,读取的时候不再发送采样启动命令。
手册相关关键描述部分:
注意配置寄存器0的MUX[3:0]进行采样输入通道选择,上电默认为AIN0-AIN1的输入通道:
STM32工程配置
这里采用STM32F103C6T6和STM32CUBEIDE开发环境,实现ADS1220的ADC数据读取代码。
首先配置基本工程和时钟系统:
STM32F103支持USB,可以实现虚拟串口,所以进行USB的配置,采用默认设置接口,另外配置UART2作为可选通讯口。
然后配置UART2:
选择5个通讯管脚,这里的选用:
PB0: /DRDY from ADS1220
PB1: /CS to ADS1220
PB4: DOUT from ADS1220
PB5: DIN to ADS1220
PB6: SCLK to ADS1220
保存并生成初始代码:
STM32工程代码
代码微秒级的时序控制,采用的微秒延时函数参考: STM32 HAL us delay(微秒延时)的指令延时实现方式及优化
STM32虚拟串口的设置可以参考: STM32 USB VCOM和HID的区别,配置及Echo功能实现(HAL)
编译时需要采用节省存储的编译方式,参考: STM32 region `FLASH‘ overflowed by xxx bytes 问题解决
代码在USB的控制文件里,将USB接收到的字节赋值给全局变量cmd,用来控制逻辑执行:
- 在收到0x01时,复位ADS1220
- 在收到0x02时,关电ADS1220
- 在收到0x03时,执行转换启动命令和单次采样数据读取(AIN0-AIN1的输入通道)
- 在收到0x04时,直接读取当前采样数据(AIN0-AIN1的输入通道)
- 在收到0x05时,设置ADS1220内部4个寄存器值,这里设置为连续转换模式
- 在收到0x06时,读取ADS1220内部4个寄存器值
- 在收到0x07时,执行转换启动命令和读取连续转换模式多个采样数据并获得平均值, 这里读取100次(AIN0-AIN1的输入通道)
main.c文件内容:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
//Written by Pegasus Yu in 2022
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usb_device.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "string.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
__IO uint32_t firstms, secondms;
__IO uint32_t counter = 0;
firstms = HAL_GetTick()+1;
secondms = firstms+1;
while(uwTick!=firstms) ;
while(uwTick!=secondms) counter++;
usDelayBase = ((float)counter)/1000;
}
void PY_Delay_us_t(uint32_t Delay)
{
__IO uint32_t delayReg;
__IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);
delayReg = 0;
while(delayReg!=usNum) delayReg++;
}
void PY_usDelayOptimize(void)
{
__IO uint32_t firstms, secondms;
__IO float coe = 1.0;
firstms = HAL_GetTick();
PY_Delay_us_t(1000000) ;
secondms = HAL_GetTick();
coe = ((float)1000)/(secondms-firstms);
usDelayBase = coe*usDelayBase;
}
void PY_Delay_us(uint32_t Delay)
{
__IO uint32_t delayReg;
__IO uint32_t msNum = Delay/1000;
__IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);
if(msNum>0) HAL_Delay(msNum);
delayReg = 0;
while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define cmd_reset 0x06
#define cmd_start_sync 0x08
#define cmd_powerdown 0x02
#define cmd_rdata 0x10
#define cmd_rreg 0x23 //read 4 bytes from all registers
#define cmd_wreg 0x43 //write 4 bytes from all registers
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
#define ads1220_rdy (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_0)==0)?1:0
#define write_to_ads1220_cs_l HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_RESET)
#define write_to_ads1220_cs_h HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_SET)
#define write_to_ads1220_clk_l HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_RESET)
#define write_to_ads1220_clk_h HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET)
#define write_to_ads1220_din_l HAL_GPIO_WritePin(GPIOB, GPIO_PIN_5, GPIO_PIN_RESET)
#define write_to_ads1220_din_h HAL_GPIO_WritePin(GPIOB, GPIO_PIN_5, GPIO_PIN_SET)
#define read_from_ads1220_dout HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_4)
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t cmd=0;
uint32_t ads1220_data;
uint8_t Config_Reg_Read_Value[4];
uint8_t Config_Reg_Write_Value[4];
#define continuous_read_times 100
uint32_t ads1220_data_all[continuous_read_times];
uint64_t ads1220_data_avg = 0;
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART2_UART_Init();
MX_USB_DEVICE_Init();
/* USER CODE BEGIN 2 */
PY_usDelayTest();
PY_usDelayOptimize();
__HAL_UART_CLEAR_FLAG(&huart2, UART_FLAG_RXNE);
HAL_UART_Receive_IT(&huart2, (uint8_t *)&cmd, 1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if(cmd==0x01) //reset
{
write_to_ads1220_clk_l;
write_to_ads1220_cs_l ;
PY_Delay_us_t(1);
for(uint8_t i=0; i<8; i++)
{
write_to_ads1220_clk_h;
if((cmd_reset<<i)&0x80) write_to_ads1220_din_h;
else write_to_ads1220_din_l;
PY_Delay_us_t(1);
write_to_ads1220_clk_l;
PY_Delay_us_t(1);
}
PY_Delay_us_t(1);
write_to_ads1220_cs_h ;
while( CDC_Transmit_FS(&cmd, 1) != USBD_OK ) PY_Delay_us_t(1);
cmd=0x00;
}
if(cmd==0x02) //Power down
{
write_to_ads1220_clk_l;
write_to_ads1220_cs_l ;
PY_Delay_us_t(1);
for(uint8_t i=0; i<8; i++)
{
write_to_ads1220_clk_h;
if((cmd_powerdown<<i)&0x80) write_to_ads1220_din_h;
else write_to_ads1220_din_l;
PY_Delay_us_t(1);
write_to_ads1220_clk_l;
PY_Delay_us_t(1);
}
PY_Delay_us_t(1);
write_to_ads1220_cs_h ;
while( CDC_Transmit_FS(&cmd, 1) != USBD_OK ) PY_Delay_us_t(1);
cmd=0x00;
}
else if(cmd==0x03) //single read for single or continuous conversion
{
cmd=0x00;
write_to_ads1220_clk_l;
write_to_ads1220_cs_l ;
PY_Delay_us_t(1);
for(uint8_t i=0; i<8; i++)
{
write_to_ads1220_clk_h;
if((cmd_start_sync<<i)&0x80) write_to_ads1220_din_h;
else write_to_ads1220_din_l;
PY_Delay_us_t(1);
write_to_ads1220_clk_l;
PY_Delay_us_t(1);
}
while(!ads1220_rdy);
PY_Delay_us_t(1);
ads1220_data = 0;
for(uint8_t i=0;i<24;i++)
{
write_to_ads1220_clk_h;
PY_Delay_us_t(1);
write_to_ads1220_clk_l;
ads1220_data |= (read_from_ads1220_dout<<(23-i));
PY_Delay_us_t(1);
}
PY_Delay_us_t(1);
write_to_ads1220_cs_h ;
while( CDC_Transmit_FS(&ads1220_data, 3) != USBD_OK ) PY_Delay_us_t(1);
}
else if(cmd==0x04) //Direct read despite of conversion status
{
cmd=0x00;
write_to_ads1220_clk_l;
write_to_ads1220_cs_l ;
PY_Delay_us_t(1);
for(uint8_t i=0; i<8; i++)
{
write_to_ads1220_clk_h;
if((cmd_rdata<<i)&0x80) write_to_ads1220_din_h;
else write_to_ads1220_din_l;
PY_Delay_us_t(1);
write_to_ads1220_clk_l;
PY_Delay_us_t(1);
}
PY_Delay_us_t(1);
ads1220_data = 0;
for(uint8_t i=0;i<24;i++)
{
write_to_ads1220_clk_h;
PY_Delay_us_t(1);
write_to_ads1220_clk_l;
ads1220_data |= (read_from_ads1220_dout<<(23-i));
PY_Delay_us_t(1);
}
PY_Delay_us_t(1);
write_to_ads1220_cs_h ;
while( CDC_Transmit_FS(&ads1220_data, 3) != USBD_OK ) PY_Delay_us_t(1);
}
if(cmd==0x05) //Set all config registers
{
//Set config register value here ↓
Config_Reg_Write_Value[0] = 0; //channel --> AINP = AIN0,AINN = AIN1
Config_Reg_Write_Value[1] = 0x04; //Set continuous conversion mode
Config_Reg_Write_Value[2] = 0;
Config_Reg_Write_Value[3] = 0;
write_to_ads1220_clk_l;
write_to_ads1220_cs_l ;
PY_Delay_us_t(1);
for(uint8_t i=0; i<8; i++)
{
write_to_ads1220_clk_h;
if((cmd_wreg<<i)&0x80) write_to_ads1220_din_h;
else write_to_ads1220_din_l;
PY_Delay_us_t(1);
write_to_ads1220_clk_l;
PY_Delay_us_t(1);
}
PY_Delay_us_t(1);
for(uint8_t k=0; k<4; k++)
{
for(uint8_t i=0; i<8; i++)
{
write_to_ads1220_clk_h;
if((Config_Reg_Write_Value[k]<<i)&0x80) write_to_ads1220_din_h;
else write_to_ads1220_din_l;
PY_Delay_us_t(1);
write_to_ads1220_clk_l;
PY_Delay_us_t(1);
}
PY_Delay_us_t(1);
}
PY_Delay_us_t(1);
write_to_ads1220_cs_h ;
while( CDC_Transmit_FS(&cmd, 1) != USBD_OK ) PY_Delay_us_t(1);
cmd=0x00;
}
else if(cmd==0x06) //Read all config registers
{
cmd=0x00;
write_to_ads1220_clk_l;
write_to_ads1220_cs_l ;
PY_Delay_us_t(1);
for(uint8_t i=0; i<8; i++)
{
write_to_ads1220_clk_h;
if((cmd_rreg<<i)&0x80) write_to_ads1220_din_h;
else write_to_ads1220_din_l;
PY_Delay_us_t(1);
write_to_ads1220_clk_l;
PY_Delay_us_t(1);
}
PY_Delay_us_t(1);
for(uint8_t k=0; k<4; k++)
{
Config_Reg_Read_Value[k]=0;
for(uint8_t i=0;i<8;i++)
{
write_to_ads1220_clk_h;
PY_Delay_us_t(1);
write_to_ads1220_clk_l;
Config_Reg_Read_Value[k] |= (read_from_ads1220_dout<<(7-i));
PY_Delay_us_t(1);
}
PY_Delay_us_t(1);
}
write_to_ads1220_cs_h ;
while( CDC_Transmit_FS(Config_Reg_Read_Value, 4) != USBD_OK ) PY_Delay_us_t(1);
}
else if(cmd==0x07) //Continuous read
{
cmd=0x00;
write_to_ads1220_clk_l;
write_to_ads1220_cs_l ;
PY_Delay_us_t(1);
for(uint8_t i=0; i<8; i++)
{
write_to_ads1220_clk_h;
if((cmd_start_sync<<i)&0x80) write_to_ads1220_din_h;
else write_to_ads1220_din_l;
PY_Delay_us_t(1);
write_to_ads1220_clk_l;
PY_Delay_us_t(1);
}
for(uint32_t j=0; j<continuous_read_times; j++)
{
while(!ads1220_rdy);
PY_Delay_us_t(1);
ads1220_data_all[j] = 0;
for(uint8_t i=0;i<24;i++)
{
write_to_ads1220_clk_h;
PY_Delay_us_t(1);
write_to_ads1220_clk_l;
ads1220_data_all[j] |= (read_from_ads1220_dout<<(23-i));
PY_Delay_us_t(1);
}
PY_Delay_us_t(1);
}
write_to_ads1220_cs_h ;
while( CDC_Transmit_FS(ads1220_data_all, 4*continuous_read_times) != USBD_OK ) PY_Delay_us_t(1);
ads1220_data_avg = 0;
for(uint32_t k=0; k<continuous_read_times; k++)
{
ads1220_data_avg += ads1220_data_all[k];
}
ads1220_data_avg /= continuous_read_times;
PY_Delay_us_t(100000);
while( CDC_Transmit_FS(&ads1220_data_avg, 3) != USBD_OK ) PY_Delay_us_t(1);
}
else;
PY_Delay_us_t(200000);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USB;
PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_PLL_DIV1_5;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_5|GPIO_PIN_6, GPIO_PIN_RESET);
/*Configure GPIO pins : PB0 PB4 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : PB1 PB5 PB6 */
GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_5|GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle)
{
HAL_UART_Receive_IT(&huart2, (uint8_t *)&cmd, 1);
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
STM32代码测试
通过串口工具发送0x01复位ADS1220:
通过串口工具发送0x02关电ADS1220:
通过串口工具发送0x03读取采样值:
通过串口工具发送0x04读取采样值:
通过串口工具发送0x05设置寄存器内容:
通过串口工具发送0x06读取寄存器内容:
通过串口工具发送0x07读取100次采样值和平均值:
代码实现十六进制数据输出,如果要切换为串口printf打印输出,可以参考:
STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)
例程下载
STM32F103C6T6模拟SPI协议读取双通道24位模数转换(24bit ADC)芯片ADS1220数据例程文章来源:https://www.toymoban.com/news/detail-407895.html
–End–文章来源地址https://www.toymoban.com/news/detail-407895.html
到了这里,关于STM32模拟SPI时序配置读取双路24位模数转换(24bit ADC)芯片ADS1220采样数据的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!