优化器SGD、Adam和AdamW的区别和联系

这篇具有很好参考价值的文章主要介绍了优化器SGD、Adam和AdamW的区别和联系。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

优化器是用来更新和计算影响模型训练和模型输出的网络参数,使其逼近或达到最优值,从而最小化(或最大化)损失函数。

SGD

随机梯度下降是最简单的优化器,它采用了简单的梯度下降法,只更新每一步的梯度,但是它的收敛速度会受到学习率的影响。
优点: 简单性,在优化算法中没有太多的参数需要调整,通过少量的计算量就可以获得比较好的结果。
缺点: 在某些极端情况下容易受到局部最小值的影响,也容易出现收敛的问题。

SGDR

SGDR指的是Stochastic Gradient Descent with Warm Restarts(带有热重启的随机梯度下降)。它是一种优化器调度策略,旨在帮助模型在训练过程中更好地收敛,避免陷入局部最优解
优点:

  • 因为使用了学习率衰减周期性重启技术,从而在训练结束前使模型更加充分地探索数据的不同部分, 改善了训练的泛化性能。
  • SGDR具有周期性重启的机制,因此有可能使优化过程跳出局部最优解
  • GDR使用周期性重启技术,可以使模型更快地收敛从而缩短训练时间

缺点:

  • SGDR的性能取决于学习率的初始值、最小值、重启周期等超参数的选择,需要仔细地调整这些超参数才能取得最佳效果。
  • SGDR的性能优化取决于数据分布和模型的复杂度等因素,对于某些问题可能无法带来显著的性能提升。

Adam

Adam是改进的SGD,它加入了更新的动量和自适应的学习率,可以帮助更快地收敛。
优点:

  • 它融合了Momentum优化方法和RMSProp优化方法,可以帮助优化算法提高精度。
  • 它还可以自动调整学习率,因此不需要太多参数调整。

缺点: 它需要消耗更多的内存,而且可能会出现收敛问题。

AdamW

AdamW是Adam的变体,用来处理大型数据集,它以一定的比率来缩减模型参数的梯度,从而减少计算量,提高训练速度。
优点:

  • 它可以自动调整学习率,而不需要太多参数调整,降低了冗余性。
  • 它也可以自动调整权重衰减系数,使模型更加稳定,避免过拟合。

缺点: 学习率容易受到网络噪声的影响,从而影响优化过程。

联系🎈

因此,SGD和Adam是构建模型优化的常用方法,而AdamW是他们的变体,用于处理大型数据集。


未完,会继续补充!😁文章来源地址https://www.toymoban.com/news/detail-407983.html

到了这里,关于优化器SGD、Adam和AdamW的区别和联系的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • SGD算法的优化特性及其在深度学习中的应用(OptimizationPropertiesandApplicat

    作者:禅与计算机程序设计艺术 SGD(Stochastic Gradient Descent)算法作为深度学习中最常用的优化算法之一,具有较好的全局收敛速度和稳定性。然而,在某些场景下,SGD算法的训练效率和泛化能力仍有待提高。本文将探讨SGD算法的优化特性及其在深度学习中的应用。 引言 1.1

    2024年02月09日
    浏览(37)
  • Adam优化器及其变种的原理

    本文将从SGD开始介绍Adam优化器的原理以及其变种的提出背景。 SGD(随机梯度下降法)是基于 最速梯度下降 法的原理,假设我们存在损失函数,其中是要学习参数,定义如下的优化路径 ,使得损失函数值最小。这是一个不断更新迭代参数的过程,其中表示其中某一更新步,

    2024年02月04日
    浏览(37)
  • Adam优化器算法详解及代码实现

    在介绍Adam算法之前,先谈谈Adam中两个关键的算法: 学习率调整(RMSprop 算法) 与 梯度估计修正 。 学习率是神经网络优化时的重要超参数。在标准的梯度下降法中,每个参数在每次迭代时都使用相同的学习率,但是学习率如果过大就不会收敛,如果过小则收敛速度太慢。

    2024年02月02日
    浏览(42)
  • 深度学习优化入门:Momentum、RMSProp 和 Adam

    目录 深度学习优化入门:Momentum、RMSProp 和 Adam 病态曲率 1牛顿法 2 Momentum:动量 3Adam   本文,我们讨论一个困扰神经网络训练的问题,病态曲率。 虽然局部极小值和鞍点会阻碍我们的训练,但病态曲率会减慢训练的速度,以至于从事机器学习的人可能会认为搜索已经收敛到一

    2024年02月11日
    浏览(32)
  • 利用Adam优化算法进行语音识别任务:提升模型准确率

    作者:禅与计算机程序设计艺术 语音识别是人工智能领域中的一个重要应用,近年来随着深度学习算法的快速发展,语音识别技术也取得了长足的进步。在语音识别任务中,训练模型需要大量的数据和计算资源,而且模型的准确性也是至关重要的。因此,如何提高模型的准确

    2024年02月09日
    浏览(49)
  • 神经网络基础-神经网络补充概念-49-adam优化算法

    Adam(Adaptive Moment Estimation)是一种优化算法,结合了动量梯度下降法和RMSProp的优点,用于在训练神经网络等深度学习模型时自适应地调整学习率。Adam算法在深度学习中广泛应用,通常能够加速收敛并提高模型性能。 Adam算法综合了动量(momentum)和均方梯度的移动平均(RMS

    2024年02月12日
    浏览(31)
  • 改善神经网络——优化算法(mini-batch、动量梯度下降法、Adam优化算法)

    优化算法可以使神经网络运行的更快,机器学习的应用是一个高度依赖经验的过程,伴随着大量迭代的过程,你需要训练诸多模型,才能找到合适的那一个,所以,优化算法能够帮助你快速训练模型。 其中一个难点在于,深度学习没有在大数据领域发挥最大的效果,我们可以

    2024年02月12日
    浏览(47)
  • SDG,ADAM,LookAhead,Lion等优化器的对比介绍

    本文将介绍了最先进的深度学习优化方法,帮助神经网络训练得更快,表现得更好。有很多个不同形式的优化器,这里我们只找最基础、最常用、最有效和最新的来介绍。 首先,让我们定义优化。当我们训练我们的模型以使其表现更好时,首先使用损失函数,训练时损失的减

    2023年04月09日
    浏览(40)
  • 【机器学习】P17 梯度下降 与 梯度下降优化算法(BGD 等 与 Adam Optimizer、AdaGrad、RMSProp)

    梯度下降(Gradient Descent)是一种常用的优化算法,用于求解目标函数的最小值。(在机器学习应用梯度下降中,主要目标是为了最小化损失函数); 其基本思想是通过不断迭代调整参数,使得目标函数的值不断逼近最小值。(机器学习中是为了最小化损失函数,即使得预测

    2023年04月16日
    浏览(47)
  • 涨点技巧: 谷歌强势推出优化器Lion,引入到Yolov8,内存更小、效率更高,秒杀Adam(W)

    论文:https://arxiv.org/abs/2302.06675 代码:automl/lion at master · google/automl · GitHub 1

    2023年04月18日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包