Semantic Kernel 入门系列:?LLM的魔法

这篇具有很好参考价值的文章主要介绍了Semantic Kernel 入门系列:?LLM的魔法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Semantic Kernel 入门系列:?LLM的魔法

ChatGPT 只是LLM 的小试牛刀,让人类能够看到的是机器智能对于语言系统的理解和掌握。

如果只是用来闲聊,而且只不过是将OpenAI的接口封装一下,那么市面上所有的ChatGPT的换皮应用都差不多。这就像是买了个徕卡镜头的手机,却只用来扫二维码一样。

由于微软的财大气粗,在OpenAI取得进展之后,微软开始了对其产品的一轮AI化改造,从Github Copilot,到Bing Copilot ,再到Microsoft 365 Copilot,从名称定义也看得出来,LLM带来的最大生产力提升都是在人机协作方面。

LLM的强大之处在于可以架起自然语言与机器语言之间的桥梁。通过合适的提示词,我们可以让LLM把自然语言中的关健信息提取出来,哪怕是文本背后的一些隐含信息也可以进行处理。

其中最简单的就是分类和标记。
Semantic Kernel 入门系列:?LLM的魔法
Semantic Kernel 入门系列:?LLM的魔法

然后是非结构化数据的格式整理。
Semantic Kernel 入门系列:?LLM的魔法

基于以上的功能,就可以将自然语言作为输入参数,通过LLM将自然语言转化为代码可理解的结构化参数,例如json、yaml或者xml等,直接传递给程序进行处理的。当然也可以用来做格式纠错。
Semantic Kernel 入门系列:?LLM的魔法

如果再进一步,通过LLM将用户的需求输入转化为特定的代码语言,尤其是特定的领域语言的话,那么就可以直接通过自然语言给机器下达指令,这甚至不需要额外的训练。

代码语言的执行结果,反过来通过LLM翻译为人能听懂的大白话,由此便可轻松的实现自然语言的人机交互。就像是图形视窗改变了计算机的交互,浏览器的发明改变了互联网的交互,如今的LLM的推广必然也会改变人与机器的交互。


参考资料:文章来源地址https://www.toymoban.com/news/detail-408359.html

  1. 🟡 LLMs使用工具 | Learn Prompting
  2. Concepts Overview for Semantic Kernel | Microsoft Learn
  3. Examples - OpenAI API
  4. Semantic function example: fixing JSON syntax with a semantic function · microsoft/semantic-kernel · Discussion #143 (github.com)

到了这里,关于Semantic Kernel 入门系列:?LLM的魔法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Semantic Kernel 入门系列:?Native Function

    语义的归语义,语法的归语法。 最基本的Native Function定义只需要在方法上添加 SKFunction 的特性即可。 默认情况下只需要传递一个string 参数就行,如果需要多个参数的话,和Semantic Function一样,也是使用Context,不过这里传进去是 SKContext 。在方法上使用 SKFunctionContextParameter 声

    2023年04月11日
    浏览(42)
  • Semantic Kernel 入门系列:? Planner 计划管理

    Semantic Kernel 的一个核心能力就是实现“目标导向”的AI应用。 “目标导向”听起来是一个比较高大的词,但是却是实际生活中我们处理问题的基本方法和原则。 顾名思义,这种方法的核心就是先确定目标,然后再寻找实现目标的方法和步骤。这对于人来说的是很自然的事情

    2023年04月16日
    浏览(37)
  • Semantic Kernel 入门系列:? Planner 规划器

    Semantic Kernel 的一个核心能力就是实现“目标导向”的AI应用。 “目标导向”听起来是一个比较高大的词,但是却是实际生活中我们处理问题的基本方法和原则。 顾名思义,这种方法的核心就是先确定目标,然后再寻找实现目标的方法和步骤。这对于人来说的是很自然的事情

    2023年04月16日
    浏览(34)
  • Semantic Kernel 入门系列:?Connector连接器

    当我们使用Native Function的时候,除了处理一些基本的逻辑操作之外,更多的还是需要进行外部数据源和服务的对接,要么是获取相关的数据,要么是保存输出结果。这一过程在Semantic Kernel中可以被归类为Connector。 Connector更像是一种设计模式,并不像Function和Memory 一样有强制和

    2023年04月15日
    浏览(42)
  • Semantic Kernel 入门系列:?突破提示词的限制

    LLM对自然语言的理解和掌握在知识内容的解读和总结方面提供了强大的能力。 但是由于训练数据本身来自于公共领域,也就注定了无法在一些小众或者私有的领域能够足够的好的应答。 因此如何给LLM 提供足够多的信息上下文,就是如今的LLM AI应用可以充分发挥能力的地方了

    2023年04月13日
    浏览(50)
  • 微软开源了一个 助力开发LLM 加持的应用的 工具包 semantic-kernel

    在首席执行官萨蒂亚·纳德拉(Satya Nadella)的支持下,微软似乎正在迅速转变为一家以人工智能为中心的公司。最近微软的众多产品线都采用GPT-4加持,从Microsoft 365等商业产品到“新必应”搜索引擎,再到低代码/无代码Power Platform等面向开发的产品,包括软件开发组件Power

    2024年02月03日
    浏览(47)
  • LangChain vs Semantic Kernel

    每当向他人介绍 Semantic Kernel, 会得到的第一个问题就是 Semantic Kernel 类似于LangChain吗,或者是c# 版本的LangChain吗? 为了全面而不想重复的回答这个问题,因此我写下这篇文章。 在 ChatGPT 之前,构建 集成AI的应用程序的主要分为两个步骤: 机器学习工程师/数据科学家创建模

    2023年04月20日
    浏览(39)
  • 体验Semantic Kernel图片内容识别

        前几日在浏览devblogs.microsoft.com的时候,看到了一篇名为Image to Text with Semantic Kernel and HuggingFace的文章。这篇文章大致的内容讲的是,使用 Semantic Kernel 结合 HuggingFace 来实现图片内容识别。注意,这里说的是图片内容识别,并非是 OCR ,而是它可以大致的描述图片里的主要

    2024年04月08日
    浏览(51)
  • 使用 Semantic Kernel 实现 Microsoft 365 Copilot 架构

    3月16日,微软发布了微软365 Copilot[1]。 Microsoft 365 Copilot 将您现有的 Word、Excel、PowerPoint、Outlook 和 Teams 与大型语言模型 (LLM) 的强大功能以及来自 Microsoft Graph 和 Microsoft 365 应用的数据相结合,以创建前所未有的体验。正如您在官方视频中看到的那样,Microsoft 365 Copilot的核心

    2024年02月02日
    浏览(37)
  • 旁门左道:借助 HttpClientHandler 拦截请求,体验 Semantic Kernel 插件

    前天尝试通过 one-api + dashscope(阿里云灵积) + qwen(通义千问) 运行 Semantic Kernel 插件(Plugin) ,结果尝试失败,详见前天的博文。 今天换一种方式尝试,选择了一个旁门左道走走看,看能不能在不使用大模型的情况下让 Semantic Kernel 插件运行起来,这个旁门左道就是从 Stephen T

    2024年02月19日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包