【13】parser.add_argument+利用GPU训练

这篇具有很好参考价值的文章主要介绍了【13】parser.add_argument+利用GPU训练。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. parser.add_argument

① 像运行Tensorboar一样,在Terminal终端,可以命令运行.py文件。

② 如下图所示,Terminal终端运行.py文件时,--变量 后面的值是给变量进行赋值,赋值后再在.py文件中运行。例如 ./datasets/maps 是给前面的dataroot赋值,maps_cyclegan是给前面的name赋值,cycle_gan是给前面的model赋值。

③ required表示必须需要指定参数,default表示有默认的参数了。Terminal终端命令语句,如果不对该默认变量新写入,直接调用默认的参数;如果对该默认变量新写入,则默认的参数被新写入的参数覆盖。
【13】parser.add_argument+利用GPU训练


1. 利用GPU训练(方式一) 

① GPU训练主要有三部分,网络模型、数据(输入、标注)、损失函数,这三部分放到GPU上。

import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# from model import * 相当于把 model中的所有内容写到这里,这里直接把 model 写在这里
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),  # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2    
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),  # 展平后变成 64*4*4 了
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x

# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)       
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))

# 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)        
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
tudui = Tudui() 
if torch.cuda.is_available():
    tudui = tudui.cuda() # 网络模型转移到cuda上

# 损失函数
loss_fn = nn.CrossEntropyLoss() # 交叉熵,fn 是 fuction 的缩写
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()        # 损失函数转移到cuda上

# 优化器
learning = 0.01  # 1e-2 就是 0.01 的意思
optimizer = torch.optim.SGD(tudui.parameters(),learning)   # 随机梯度下降优化器  

# 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0

# 训练的轮次
epoch = 10

# 添加 tensorboard
writer = SummaryWriter("logs")

for i in range(epoch):
    print("-----第 {} 轮训练开始-----".format(i+1))
    
    # 训练步骤开始
    tudui.train() # 当网络中有dropout层、batchnorm层时,这些层能起作用
    for data in train_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs = imgs.cuda()  # 数据放到cuda上
            targets = targets.cuda() # 数据放到cuda上
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
        
        # 优化器对模型调优
        optimizer.zero_grad()  # 梯度清零
        loss.backward() # 反向传播,计算损失函数的梯度
        optimizer.step()   # 根据梯度,对网络的参数进行调优
        
        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step,loss.item()))  # 方式二:获得loss值
            writer.add_scalar("train_loss",loss.item(),total_train_step)
    
    # 测试步骤开始(每一轮训练后都查看在测试数据集上的loss情况)
    tudui.eval()  # 当网络中有dropout层、batchnorm层时,这些层不能起作用
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  # 没有梯度了
        for data in test_dataloader: # 测试数据集提取数据
            imgs, targets = data # 数据放到cuda上
            if torch.cuda.is_available():
                imgs = imgs.cuda() # 数据放到cuda上
                targets = targets.cuda()
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets) # 仅data数据在网络模型上的损失
            total_test_loss = total_test_loss + loss.item() # 所有loss
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
            
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)  
    total_test_step = total_test_step + 1
    
    torch.save(tudui, "./model/tudui_{}.pth".format(i)) # 保存每一轮训练后的结果
    #torch.save(tudui.state_dict(),"tudui_{}.path".format(i)) # 保存方式二         
    print("模型已保存")
    
writer.close()

'''
Files already downloaded and verified
Files already downloaded and verified
训练数据集的长度:50000
测试数据集的长度:10000
-----第 1 轮训练开始-----
训练次数:100,Loss:2.289992094039917
训练次数:200,Loss:2.2927844524383545
训练次数:300,Loss:2.2730984687805176
训练次数:400,Loss:2.2006278038024902
训练次数:500,Loss:2.1675028800964355
训练次数:600,Loss:2.116072416305542
训练次数:700,Loss:2.04477596282959
整体测试集上的Loss:317.0560564994812
整体测试集上的正确率:0.28700000047683716
模型已保存
-----第 2 轮训练开始-----
训练次数:800,Loss:1.893830418586731
训练次数:900,Loss:1.8772207498550415
训练次数:1000,Loss:1.9800275564193726
训练次数:1100,Loss:2.007078170776367
训练次数:1200,Loss:1.7352533340454102
训练次数:1300,Loss:1.6947956085205078
训练次数:1400,Loss:1.756855845451355
训练次数:1500,Loss:1.8372352123260498
整体测试集上的Loss:299.94190883636475
整体测试集上的正确率:0.31619998812675476
模型已保存
-----第 3 轮训练开始-----
训练次数:1600,Loss:1.7673416137695312
训练次数:1700,Loss:1.6654351949691772
训练次数:1800,Loss:1.9246405363082886
训练次数:1900,Loss:1.7132933139801025
训练次数:2000,Loss:1.93990159034729
训练次数:2100,Loss:1.4903961420059204
训练次数:2200,Loss:1.4754142761230469
训练次数:2300,Loss:1.7652970552444458
整体测试集上的Loss:272.9526561498642
整体测试集上的正确率:0.37139999866485596
模型已保存
-----第 4 轮训练开始-----
训练次数:2400,Loss:1.7254819869995117
训练次数:2500,Loss:1.3386430740356445
训练次数:2600,Loss:1.5852587223052979
训练次数:2700,Loss:1.648303508758545
训练次数:2800,Loss:1.4971883296966553
训练次数:2900,Loss:1.5891362428665161
训练次数:3000,Loss:1.3380193710327148
训练次数:3100,Loss:1.542701005935669
整体测试集上的Loss:278.19843327999115
整体测试集上的正确率:0.36139997839927673
模型已保存
-----第 5 轮训练开始-----
训练次数:3200,Loss:1.3419318199157715
训练次数:3300,Loss:1.468044400215149
训练次数:3400,Loss:1.484485149383545
训练次数:3500,Loss:1.54210364818573
训练次数:3600,Loss:1.5797978639602661
训练次数:3700,Loss:1.3390973806381226
训练次数:3800,Loss:1.3077597618103027
训练次数:3900,Loss:1.4766919612884521
整体测试集上的Loss:269.36583971977234
整体测试集上的正确率:0.3871999979019165
模型已保存
-----第 6 轮训练开始-----
训练次数:4000,Loss:1.439847469329834
训练次数:4100,Loss:1.436941146850586
训练次数:4200,Loss:1.5766061544418335
训练次数:4300,Loss:1.249019742012024
训练次数:4400,Loss:1.164270281791687
训练次数:4500,Loss:1.4175126552581787
训练次数:4600,Loss:1.4056789875030518
整体测试集上的Loss:252.13275730609894
整体测试集上的正确率:0.4244000017642975
模型已保存
-----第 7 轮训练开始-----
训练次数:4700,Loss:1.3679763078689575
训练次数:4800,Loss:1.526027798652649
训练次数:4900,Loss:1.3590809106826782
训练次数:5000,Loss:1.4296003580093384
训练次数:5100,Loss:0.9916519522666931
训练次数:5200,Loss:1.3147145509719849
训练次数:5300,Loss:1.2122020721435547
训练次数:5400,Loss:1.3860883712768555
整体测试集上的Loss:235.14292180538177
整体测试集上的正确率:0.46209999918937683
模型已保存
-----第 8 轮训练开始-----
训练次数:5500,Loss:1.2311736345291138
训练次数:5600,Loss:1.2175472974777222
训练次数:5700,Loss:1.2189043760299683
训练次数:5800,Loss:1.2750414609909058
训练次数:5900,Loss:1.3556095361709595
训练次数:6000,Loss:1.5370352268218994
训练次数:6100,Loss:1.025504231452942
训练次数:6200,Loss:1.0661875009536743
整体测试集上的Loss:222.47956597805023
整体测试集上的正确率:0.4927999973297119
模型已保存
-----第 9 轮训练开始-----
训练次数:6300,Loss:1.4051152467727661
训练次数:6400,Loss:1.1392022371292114
训练次数:6500,Loss:1.6226587295532227
训练次数:6600,Loss:1.0815491676330566
训练次数:6700,Loss:1.048026442527771
训练次数:6800,Loss:1.1510660648345947
训练次数:6900,Loss:1.1476961374282837
训练次数:7000,Loss:0.9481611847877502
整体测试集上的Loss:212.00453734397888
整体测试集上的正确率:0.5181999802589417
模型已保存
-----第 10 轮训练开始-----
训练次数:7100,Loss:1.2802095413208008
训练次数:7200,Loss:0.9643581509590149
训练次数:7300,Loss:1.098695993423462
训练次数:7400,Loss:0.8831453323364258
训练次数:7500,Loss:1.19520902633667
训练次数:7600,Loss:1.2724679708480835
训练次数:7700,Loss:0.8894400000572205
训练次数:7800,Loss:1.205102801322937
整体测试集上的Loss:202.72463756799698
整体测试集上的正确率:0.54339998960495
模型已保存
'''

2. GPU训练时间

start_time = time.time()
end_time = time.time()
if total_train_step % 100 == 0:
        print(end_time - start_time) # 运行训练一百次后的时间间隔

import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time

# from model import * 相当于把 model中的所有内容写到这里,这里直接把 model 写在这里
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),  # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2    
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),  # 展平后变成 64*4*4 了
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x

# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)       
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))

# 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)        
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
tudui = Tudui() 
if torch.cuda.is_available():
    tudui = tudui.cuda() # 网络模型转移到cuda上

# 损失函数
loss_fn = nn.CrossEntropyLoss() # 交叉熵,fn 是 fuction 的缩写
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()        # 损失函数转移到cuda上

# 优化器
learning = 0.01  # 1e-2 就是 0.01 的意思
optimizer = torch.optim.SGD(tudui.parameters(),learning)   # 随机梯度下降优化器  

# 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0

# 训练的轮次
epoch = 10

# 添加 tensorboard
writer = SummaryWriter("logs")
start_time = time.time()

for i in range(epoch):
    print("-----第 {} 轮训练开始-----".format(i+1))
    
    # 训练步骤开始
    tudui.train() # 当网络中有dropout层、batchnorm层时,这些层能起作用
    for data in train_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs = imgs.cuda()  # 数据放到cuda上
            targets = targets.cuda() # 数据放到cuda上
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
        
        # 优化器对模型调优
        optimizer.zero_grad()  # 梯度清零
        loss.backward() # 反向传播,计算损失函数的梯度
        optimizer.step()   # 根据梯度,对网络的参数进行调优
        
        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            end_time = time.time()
            print(end_time - start_time) # 运行训练一百次后的时间间隔
            print("训练次数:{},Loss:{}".format(total_train_step,loss.item()))  # 方式二:获得loss值
            writer.add_scalar("train_loss",loss.item(),total_train_step)
    
    # 测试步骤开始(每一轮训练后都查看在测试数据集上的loss情况)
    tudui.eval()  # 当网络中有dropout层、batchnorm层时,这些层不能起作用
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  # 没有梯度了
        for data in test_dataloader: # 测试数据集提取数据
            imgs, targets = data # 数据放到cuda上
            if torch.cuda.is_available():
                imgs = imgs.cuda() # 数据放到cuda上
                targets = targets.cuda()
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets) # 仅data数据在网络模型上的损失
            total_test_loss = total_test_loss + loss.item() # 所有loss
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
            
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)  
    total_test_step = total_test_step + 1
    
    torch.save(tudui, "./model/tudui_{}.pth".format(i)) # 保存每一轮训练后的结果
    #torch.save(tudui.state_dict(),"tudui_{}.path".format(i)) # 保存方式二         
    print("模型已保存")
    
writer.close()

3. CPU训练时间

代码一样,可以查看一下时间上的对比。

4. 利用GPU训练(方式二)

① 电脑上有两个显卡时,可以用指定cuda:0、cuda:1。

import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time

# 定义训练的设备
#device = torch.device("cpu")
#device = torch.device("cuda")   # 使用 GPU 方式一 
#device = torch.device("cuda:0") # 使用 GPU 方式二
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# from model import * 相当于把 model中的所有内容写到这里,这里直接把 model 写在这里
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),  # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2    
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),  # 展平后变成 64*4*4 了
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x

# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)       
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))

# 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)        
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
tudui = Tudui() 
tudui = tudui.to(device) # 也可以不赋值,直接 tudui.to(device) 


# 损失函数
loss_fn = nn.CrossEntropyLoss() # 交叉熵,fn 是 fuction 的缩写
loss_fn = loss_fn.to(device) # 也可以不赋值,直接loss_fn.to(device)

# 优化器
learning = 0.01  # 1e-2 就是 0.01 的意思
optimizer = torch.optim.SGD(tudui.parameters(),learning)   # 随机梯度下降优化器  

# 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0

# 训练的轮次
epoch = 10

# 添加 tensorboard
writer = SummaryWriter("logs")
start_time = time.time()

for i in range(epoch):
    print("-----第 {} 轮训练开始-----".format(i+1))
    
    # 训练步骤开始
    tudui.train() # 当网络中有dropout层、batchnorm层时,这些层能起作用
    for data in train_dataloader:
        imgs, targets = data            
        imgs = imgs.to(device) # 也可以不赋值,直接 imgs.to(device)
        targets = targets.to(device) # 也可以不赋值,直接 targets.to(device)
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
        
        # 优化器对模型调优
        optimizer.zero_grad()  # 梯度清零
        loss.backward() # 反向传播,计算损失函数的梯度
        optimizer.step()   # 根据梯度,对网络的参数进行调优
        
        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            end_time = time.time()
            print(end_time - start_time) # 运行训练一百次后的时间间隔
            print("训练次数:{},Loss:{}".format(total_train_step,loss.item()))  # 方式二:获得loss值
            writer.add_scalar("train_loss",loss.item(),total_train_step)
    
    # 测试步骤开始(每一轮训练后都查看在测试数据集上的loss情况)
    tudui.eval()  # 当网络中有dropout层、batchnorm层时,这些层不能起作用
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  # 没有梯度了
        for data in test_dataloader: # 测试数据集提取数据
            imgs, targets = data # 数据放到cuda上
            imgs = imgs.to(device) # 也可以不赋值,直接 imgs.to(device)
            targets = targets.to(device) # 也可以不赋值,直接 targets.to(device)
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets) # 仅data数据在网络模型上的损失
            total_test_loss = total_test_loss + loss.item() # 所有loss
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
            
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)  
    total_test_step = total_test_step + 1
    
    torch.save(tudui, "./model/tudui_{}.pth".format(i)) # 保存每一轮训练后的结果
    #torch.save(tudui.state_dict(),"tudui_{}.path".format(i)) # 保存方式二         
    print("模型已保存")
    
writer.close()

5. 运行Terminal语句

① 运行terminal上运行的命令,可以在代码块中输入语句,在语句前加一个感叹号。

② 输入 !nvidia-smi,可以查看显卡配置。

6.验证狗是否识别

① 完整的模型验证(测试,demo)套路,利用已经训练好的模型,然后给它提供输入。

import torchvision
from PIL import Image
from torch import nn
import torch

image_path = "imgs/dog.png"
image = Image.open(image_path) # PIL类型的Image
image = image.convert("RGB")  # 4通道的RGBA转为3通道的RGB图片
print(image)

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),   
                                            torchvision.transforms.ToTensor()])

image = transform(image)
print(image.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x

model = torch.load("model/tudui_29.pth",map_location=torch.device('cpu')) # GPU上训练的东西映射到CPU上    
print(model)
image = torch.reshape(image,(1,3,32,32)) # 转为四维,符合网络输入需求
model.eval()
with torch.no_grad():  # 不进行梯度计算,减少内存计算
    output = model(image)
output = model(image)
print(output)
print(output.argmax(1)) # 概率最大类别的输出

【13】parser.add_argument+利用GPU训练

 文章来源地址https://www.toymoban.com/news/detail-408746.html

到了这里,关于【13】parser.add_argument+利用GPU训练的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【pytorch实用小技巧】单gpu与多gpu训练与评估

    1、单gpu 首先检查GPU是否可用,并将模型、输入数据和目标标签移动到GPU上。 然后,定义损失函数和优化器。在训练循环中,将模型设置为训练模式,进行前向传播、计算损失、反向传播和参数更新。 在测试阶段,将模型设置为评估模式,并在测试数据上进行推断。 2、多

    2024年02月12日
    浏览(34)
  • Vicuna-13B量化模型单GPU可跑

    链接在这(需要科学上网) Vicuna-13B: Best Free ChatGPT Alternative According to GPT-4 🤯 | Tutorial (GPU) 有人在B站转了人家的视频 ChatGPT:在你的本地电脑上运行Vicuna-13B 🤯|教程 (GPU) 下面就是部署的步骤,其中有一步需要科学上网 因为他这个模型就认cuda:11.7版本,所以我用了人家官方模

    2024年02月06日
    浏览(75)
  • pytorch:单机多卡(GPU)训练

    目前pytorch支持2种多卡训练: 1. torch.nn.DataParallel 2. torch.nn.parallel.DistributedDataParallel 第一种只支持单机多卡,第二种支持单机多卡和多机多卡;性能上,第二种优于第一种,真正实现分布式训练。下面只介绍第二种方法的单机多卡训练: 根据以上设置,便可实现单机多卡的分

    2024年02月13日
    浏览(35)
  • AI训练,为什么需要GPU?

    随着人工智能热潮,GPU成为了AI大模型训练平台的基石,决定了算力能力。为什么GPU能力压CPU,成为炙手可热的主角呢?首先我们要先了解一下GPU的分类。提到分类,就得提及到芯片。 半导体芯片分为 数字芯片 和 模拟芯片 。其中,数字芯片的市场规模占比较大,达到70%左右

    2024年04月11日
    浏览(56)
  • PyTorch多GPU训练模型——使用单GPU或CPU进行推理的方法

    PyTorch提供了非常便捷的多GPU网络训练方法: DataParallel 和 DistributedDataParallel 。在涉及到一些复杂模型时,基本都是采用多个GPU并行训练并保存模型。但在推理阶段往往只采用单个GPU或者CPU运行。这时怎么将多GPU环境下保存的模型权重加载到单GPU/CPU运行环境下的模型上成了一

    2024年02月09日
    浏览(47)
  • Stable diffusion报Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variab

    Stable diffusion 报 Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check 错误 及 排查解决 先说一下我的显卡配置 3060Ti ,当刚开始报这个错误的时候,发现基本上很多博主说的都是在 launch.py 或者 webui-user.bat 加一个参数 --precision full --no-half --skip-torc

    2024年02月09日
    浏览(58)
  • 【分布式训练】基于PyTorch进行多GPU分布式模型训练(补充)

    简介: 在PyTorch中使用DistributedDataParallel进行多GPU分布式模型训练。 原文链接:https://towardsdatascience.com/distributed-model-training-in-pytorch-using-distributeddataparallel-d3d3864dc2a7 随着以ChatGPT为代表的大模型的不断涌现,如何在合理的时间内训练大模型逐渐成为一个重要的研究课题。为了解

    2024年02月16日
    浏览(44)
  • Pytorch实现多GPU并行训练(DDP)

    Pytorch实现并行训练通常有两个接口: DP(DataParallel) 和 DDP(DistributedDataParallel) 。目前 DP(DataParallel) 已经被Pytorch官方deprecate掉了,原因有二:1, DP(DataParallel) 只支持单机多卡,无法支持多机多卡;2, DP(DataParallel) 即便在单机多卡模式下效率也不及 DDP(Distributed

    2024年02月11日
    浏览(88)
  • 本地连接服务器使用GPU训练模型

    直接运行上面的文件,然后输入密码,这密码不是服务器的密码,但是可以直接连接到服务器上面,这个东西是什么?好厉害,居然可以跳过去服务器的账号密码 我本来想忽略一些不需要上传文件,但是无法成功忽略,scp好像不支持 下面这个命令是从服务器上面传输数据到

    2024年02月07日
    浏览(51)
  • Pytorch调用GPU训练两种方法

    我们可以通过对网络模型,数据,损失函数这三种变量调用 .cuda() 来在GPU上进行训练。 指定 训练的设备 使用 GPU 训练 查看GPU使用情况    

    2024年02月17日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包