车牌识别的N种办法——从OCR到深度学习

这篇具有很好参考价值的文章主要介绍了车牌识别的N种办法——从OCR到深度学习。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、车牌识别简介

随着科学技术的发展,人工智能技术在我们的生活中的应用越来越广泛,人脸识别、车牌识别、目标识别等众多场景已经落地应用,给我们的生活品质得到很大的提升,办事效率大大提高,同时也节约了大量的劳动力。

今天我们来讲一讲车牌识别这个任务,车牌识别技术经过多年的发展,技术路线也呈现多样化,我们来介绍一下其中的两种:

第一种,单个字符识别

首先,在地面上有传感器感应区域,当有车辆经过时自动进行拍照,然后对拍的照片进行预处理,变成灰度图像,去除噪声等,把一些干扰因素去掉,同时降低图像的大小,便于后期进行边缘提取;

其次,利用边缘提取技术,比如canny算子、sobel算子,把图像轮廓提取出来,根据车牌长宽比大概为1:2.5左右把大部分不疑似的去掉;然后,再利用图像灰度值在水平方向和竖直方向上的投影,将字符切割出来;

最后,利用模板匹配或者是已经训练好的深度学习模型进行识别,单独把每个字符识别后进行串联得到整张车牌号码。

这种方法的瓶颈在于怎么样把每一个字符准确地切割出来,这涉及到很多图像处理技术,比如高斯模糊、图像锐化、图像膨胀、伽马变化、仿射变换等等,目前对于英文字符和数字的识别准确度在96%左右,汉字识别的准确度在95%左右。

车牌识别的N种办法——从OCR到深度学习
第二种办法,整张车牌识别

首先,与第一种车牌识别一样,利用传感器进行车辆感应,把整辆车进行拍照;

其次,利用训练好的车牌检测算法,比如YOLO算法或者其他的目标检测算法把车牌检测出来。为了提升车牌识别的准确度,可以利用图像预处理技术对图像进行处理,降低干扰项;

最后,利用已经训练好的深度学习模型对整张车牌进行识别。比如LPRNet、Darknet等

二、车牌识别技术实现

## 第一种方法 ——利用 pytesseract 进行识别

pytesseract是一个OCR识别工具,具体的 pytesseract 安装可百度安装,直接使用这个工具进行识别得到的准确度还有点低,达不到理想的效果,需要利用车牌数据进行训练才可以使用。

import cv2 as cv
from PIL import Image
import pytesseract as tess
 
def recoginse_text(image):
    """
    步骤:
    1、灰度,二值化处理
    2、形态学操作去噪
    3、识别
    :param image:
    :return:
    """
 
    # 灰度 二值化
    gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY)
    # 如果是白底黑字 建议 _INV
    ret,binary = cv.threshold(gray,0,255,cv.THRESH_BINARY_INV| cv.THRESH_OTSU)
 
 
    # 形态学操作 (根据需要设置参数(1,2))
    kernel = cv.getStructuringElement(cv.MORPH_RECT,(1,2))  #去除横向细线
    morph1 = cv.morphologyEx(binary,cv.MORPH_OPEN,kernel)
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (2, 1)) #去除纵向细线
    morph2 = cv.morphologyEx(morph1,cv.MORPH_OPEN,kernel)
    cv.imshow("Morph",morph2)
 
    # 黑底白字取非,变为白底黑字(便于pytesseract 识别)
    cv.bitwise_not(morph2,morph2)
    textImage = Image.fromarray(morph2)
 
    # 图片转文字
    text=tess.image_to_string(textImage)
    print("识别结果:%s"%text)
 
 
def main():
 
    # 读取需要识别的数字字母图片,并显示读到的原图
    src = cv.imread(r'C:\Users\lenovo\Desktop\00A8CX87_5.jpg')
    cv.imshow("src",src)
 
    # 识别
    recoginse_text(src)
 
    cv.waitKey(0)
    cv.destroyAllWindows()

if __name__=="__main__":
    main()

## 第二种识别办法——PaddleOCR

PaddleOCR 是百度paddlepaddle下的OCR模块,可以用它来识别车牌,直接下载预训练模型进行识别,对于数字和子母都得到不错的准确率,但是针对中文识别的效果并不理想,需要自己的数据集进行再训练。

要想利用这个模型进行训练车牌识别,需要大量的车牌数据,人工收集不仅耗费时间长,要涉及每个省份的车牌需要比较大的成本。

另外的办法是利用图像处理技术进行数据生成,加上图像增强技术来制作数据集,这将在我们的第三章识别方法中讲到。

from paddleocr import PaddleOCR
import os

# ocr = PaddleOCR(use_gpu=False, use_angle_cls=True, lang="ch")
ocr = PaddleOCR(use_gpu=True, use_angle_cls=True, lang="ch")
path=r'E:\车牌数据'
results=[]
for file in os.listdir(path):
    img_path =os.path.join(path,file)
    result = ocr.ocr(img_path, cls=True)
    if len(result)>0: 
        results.append([img_path,result[0][1][0]])
    else:
        results.append([img_path])

将结果导出到Excel文件夹

import pandas as pd
resultss=pd.DataFrame(results)
resultss.to_excel(r'C:\Users\lenovo\Desktop\11.xlsx')

## 第三种办法 ——LPRNet算法
由于要收集满足深度学习的数据需要花费大量的时间,有一种办法是通过数据生成的办法生成大量的模拟数据集。

紧接着,我们可以利用LPRNet算法进行车牌识别,从GitHub上下载有tensorflow、torch两个版本。

第一步,生成蓝色车牌数据集
第二步,根据算法模型要求将图像名称修改并放到指定的文件夹中
第三步,模型训练和测试

## (1) 蓝色车牌生成

import os
import cv2 as cv
import numpy as np
from math import *
from PIL import ImageFont
from PIL import Image
from PIL import ImageDraw


index = {"京": 0, "沪": 1, "津": 2, "渝": 3, "冀": 4, "晋": 5, "蒙": 6, "辽": 7, "吉": 8, "黑": 9,
              "苏": 10, "浙": 11, "皖": 12, "闽": 13, "赣": 14, "鲁": 15, "豫": 16, "鄂": 17, "湘": 18, "粤": 19,
              "桂": 20, "琼": 21, "川": 22, "贵": 23, "云": 24, "藏": 25, "陕": 26, "甘": 27, "青": 28, "宁": 29,
              "新": 30, "0": 31, "1": 32, "2": 33, "3": 34, "4": 35, "5": 36, "6": 37, "7": 38, "8": 39,
              "9": 40, "A": 41, "B": 42, "C": 43, "D": 44, "E": 45, "F": 46, "G": 47, "H": 48, "J": 49,
              "K": 50, "L": 51, "M": 52, "N": 53, "P": 54, "Q": 55, "R": 56, "S": 57, "T": 58, "U": 59,
              "V": 60, "W": 61, "X": 62, "Y": 63, "Z": 64}

chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑",
              "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤",
              "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁",
              "新", "0", "1", "2", "3", "4", "5", "6", "7", "8",
              "9", "A", "B", "C", "D", "E", "F", "G", "H", "J",
              "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U",
              "V", "W", "X", "Y", "Z"]


def AddSmudginess(img, Smu):
    """
    模糊处理
    :param img: 输入图像
    :param Smu: 模糊图像
    :return: 添加模糊后的图像
    """
    rows = r(Smu.shape[0] - 50)
    cols = r(Smu.shape[1] - 50)
    adder = Smu[rows:rows + 50, cols:cols + 50]
    adder = cv.resize(adder, (50, 50))
    img = cv.resize(img,(50,50))
    img = cv.bitwise_not(img)
    img = cv.bitwise_and(adder, img)
    img = cv.bitwise_not(img)
    return img


def rot(img, angel, shape, max_angel):
    """
    添加透视畸变
    """
    size_o = [shape[1], shape[0]]
    size = (shape[1]+ int(shape[0] * cos((float(max_angel ) / 180) * 3.14)), shape[0])
    interval = abs(int(sin((float(angel) / 180) * 3.14) * shape[0]))
    pts1 = np.float32([[0, 0], [0, size_o[1]], [size_o[0], 0], [size_o[0], size_o[1]]])
    if angel > 0:
        pts2 = np.float32([[interval, 0], [0, size[1]], [size[0], 0], [size[0] - interval, size_o[1]]])
    else:
        pts2 = np.float32([[0, 0], [interval, size[1]], [size[0] - interval, 0], [size[0], size_o[1]]])
    M = cv.getPerspectiveTransform(pts1, pts2)
    dst = cv.warpPerspective(img, M, size)
    return dst


def rotRandrom(img, factor, size):
    """
    添加放射畸变
    :param img: 输入图像
    :param factor: 畸变的参数
    :param size: 图片目标尺寸
    :return: 放射畸变后的图像
    """
    shape = size
    pts1 = np.float32([[0, 0], [0, shape[0]], [shape[1], 0], [shape[1], shape[0]]])
    pts2 = np.float32([[r(factor), r(factor)], [r(factor), shape[0] - r(factor)], [shape[1] - r(factor), r(factor)],
                       [shape[1] - r(factor), shape[0] - r(factor)]])
    M = cv.getPerspectiveTransform(pts1, pts2)
    dst = cv.warpPerspective(img, M, size)
    return dst


def tfactor(img):
    """
    添加饱和度光照的噪声
    """
    hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV)
    hsv[:, :, 0] = hsv[:, :, 0] * (0.8 + np.random.random() * 0.2)
    hsv[:, :, 1] = hsv[:, :, 1] * (0.3 + np.random.random() * 0.7)
    hsv[:, :, 2] = hsv[:, :, 2] * (0.2 + np.random.random() * 0.8)
    img = cv.cvtColor(hsv, cv.COLOR_HSV2BGR)
    return img


def random_envirment(img, noplate_bg):
    """
    添加自然环境的噪声, noplate_bg为不含车牌的背景图
    """
    bg_index = r(len(noplate_bg))
    env = cv.imread(noplate_bg[bg_index])
    env = cv.resize(env, (img.shape[1], img.shape[0]))
    bak = (img == 0)
    bak = bak.astype(np.uint8) * 255
    inv = cv.bitwise_and(bak, env)
    img = cv.bitwise_or(inv, img)
    return img

 
def GenCh(f, val):
    """
    生成中文字符
    """
    img = Image.new("RGB", (45, 70), (255, 255, 255))  #白色
#     img = Image.new("RGB", (45, 70), (0, 0, 0))  #黑色
    draw = ImageDraw.Draw(img)
#     draw.text((0, 3), val, (0, 0, 0), font=f)
    draw.text((0, 3), val, (0, 0, 0), font=f)
    img =  img.resize((23, 70))
    A = np.array(img)
    return A


def GenCh1(f, val):
    """
    生成英文字符
    """
    img =Image.new("RGB", (23, 70), (255,255,255))#白色
#     img =Image.new("RGB", (23, 70), (0, 0, 0))#黑色
    draw = ImageDraw.Draw(img)
    draw.text((0, 2), val, (0,125,125), font=f)    # val.decode('utf-8')
    A = np.array(img)
    return A

 
def AddGauss(img, level):
    """
    添加高斯模糊
    """ 
    return cv.blur(img, (level * 2 + 1, level * 2 + 1))


def r(val):
    return int(np.random.random() * val)


def AddNoiseSingleChannel(single):
    """
    添加高斯噪声
    """
    diff = 255 - single.max()
    noise = np.random.normal(0, 1 + r(6), single.shape)
    noise = (noise - noise.min()) / (noise.max() - noise.min())
    noise *= diff
    # noise= noise.astype(np.uint8)
    dst = single + noise
    return dst


def addNoise(img):    # sdev = 0.5,avg=10
    img[:, :, 0] = AddNoiseSingleChannel(img[:, :, 0])
    img[:, :, 1] = AddNoiseSingleChannel(img[:, :, 1])
    img[:, :, 2] = AddNoiseSingleChannel(img[:, :, 2])
    return img
 
class GenPlate:
    def __init__(self, fontCh, fontEng, NoPlates):
        self.fontC = ImageFont.truetype(fontCh, 43, 0)
        self.fontE = ImageFont.truetype(fontEng, 60, 0)
        self.img = np.array(Image.new("RGB", (226, 70),(255, 255, 255)))
#         self.img = np.array(Image.new("RGB", (226, 70),(0, 0, 0)))
        self.bg  = cv.resize(cv.imread(r"C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\generate_picture\images\blue.bmp"), (226, 70)) 
        # template.bmp:车牌背景图
        self.smu = cv.imread(r"E:\AI_projects\vehicle license plate recognition\car_recognition\data\images\\smu2.jpg")  
        # smu2.jpg:模糊图像
        self.noplates_path = []
        for parent, parent_folder, filenames in os.walk(NoPlates):
            for filename in filenames:
                path = parent + "\\" + filename
                self.noplates_path.append(path)
 
    def draw(self, val):
        offset = 2
        self.img[0:70, offset+8:offset+8+23] = GenCh(self.fontC, val[0])
        self.img[0:70, offset+8+23+6:offset+8+23+6+23] = GenCh1(self.fontE, val[1])
        for i in range(5):
            base = offset + 8 + 23 + 6 + 23 + 17 + i * 23 + i * 6
            self.img[0:70, base:base+23] = GenCh1(self.fontE, val[i+2])
        return self.img
    
    def generate(self, text):
        if len(text) == 7:
            fg = self.draw(text)    # decode(encoding="utf-8")
            fg = cv.bitwise_not(fg)
            com = cv.bitwise_or(fg, self.bg)
            com = rot(com, r(30)-10, com.shape,30)
            com = rotRandrom(com, 5, (com.shape[1], com.shape[0]))
            com = tfactor(com)
            com = random_envirment(com, self.noplates_path)
            com = AddGauss(com, 1+r(4))
            com = addNoise(com)
            return com

    @staticmethod
    def genPlateString(pos, val):
        """
        生成车牌string,存为图片
        生成车牌list,存为label
        """
        plateStr = ""
        plateList=[]
        box = [0, 0, 0, 0, 0, 0, 0]
        if pos != -1:
            box[pos] = 1
        for unit, cpos in zip(box, range(len(box))):
            if unit == 1:
                plateStr += val
                plateList.append(val)
            else:
                if cpos == 0:
                    plateStr += chars[r(31)]
                    plateList.append(plateStr)
                elif cpos == 1:
                    plateStr += chars[41 + r(24)]
                    plateList.append(plateStr)
                else:
                    plateStr += chars[31 + r(34)]
                    plateList.append(plateStr)
        plate = [plateList[0]]
        b = [plateList[i][-1] for i in range(len(plateList))]
        plate.extend(b[1:7])
        return plateStr, plate

    @staticmethod
    def genBatch(batchsize, outputPath, size):
        """
        将生成的车牌图片写入文件夹,对应的label写入label.txt
        :param batchsize:  批次大小
        :param outputPath: 输出图像的保存路径
        :param size: 输出图像的尺寸
        :return: None
        """
        if not os.path.exists(outputPath):
            os.mkdir(outputPath)
        outfile = open(r'C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\label_blue.txt',
                       'w', encoding='utf-8')
        for i in range(batchsize):
            plateStr, plate = G.genPlateString(-1, -1)
            img = G.generate(plateStr)
            img = cv.resize(img, size)
            content = "".join(plate)
            cv.imwrite(outputPath + "\\" + str(i).zfill(2) + ".jpg", img)
            outfile.write("./train/"+str(i).zfill(2)+".jpg"+'\t'+content +"\n")


G = GenPlate(r"E:\AI_projects\vehicle license plate recognition\car_recognition\data\font\platech.ttf", 
             r'E:\AI_projects\vehicle license plate recognition\car_recognition\data\font\platechar.ttf', 
             r"E:\AI_projects\vehicle license plate recognition\car_recognition\data\NoPlates")
G.genBatch(1000, r'C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\test_in_blue', (272, 72))

需要生成多少张车牌数据可通过修改最后一行代码的数字即可

## (2) 生产黄色车牌

生成车牌的步骤是把字符写到纯净的背景图片上,蓝色的车牌是把白色的字写到蓝色底的车牌上,可以直接把字符写到底牌上去,但是黄色底的车牌不能简单把黑色字写上去,写上去的结果是字符被隐藏起来,需要特别处理。

正确的做法是:
第一步,构造一张车牌大小的纯黑色车牌,往上面写白色字符
第二步,将黑白色进行反转,把这牌的字符和背景进行翻转
第三步,将一张没有字符的黄色底牌和反转后的车牌进行结合,然后经过高斯模糊、改变光线、旋转角度等各种随机组合模拟出于生活中拍摄处理的图像。

#黄色车牌生成
import os
import cv2 as cv
import numpy as np
from math import *
from PIL import ImageFont
from PIL import Image
from PIL import ImageDraw


index = {"京": 0, "沪": 1, "津": 2, "渝": 3, "冀": 4, "晋": 5, "蒙": 6, "辽": 7, "吉": 8, "黑": 9,
              "苏": 10, "浙": 11, "皖": 12, "闽": 13, "赣": 14, "鲁": 15, "豫": 16, "鄂": 17, "湘": 18, "粤": 19,
              "桂": 20, "琼": 21, "川": 22, "贵": 23, "云": 24, "藏": 25, "陕": 26, "甘": 27, "青": 28, "宁": 29,
              "新": 30, "0": 31, "1": 32, "2": 33, "3": 34, "4": 35, "5": 36, "6": 37, "7": 38, "8": 39,
              "9": 40, "A": 41, "B": 42, "C": 43, "D": 44, "E": 45, "F": 46, "G": 47, "H": 48, "J": 49,
              "K": 50, "L": 51, "M": 52, "N": 53, "P": 54, "Q": 55, "R": 56, "S": 57, "T": 58, "U": 59,
              "V": 60, "W": 61, "X": 62, "Y": 63, "Z": 64}

chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑",
              "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤",
              "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁",
              "新", "0", "1", "2", "3", "4", "5", "6", "7", "8",
              "9", "A", "B", "C", "D", "E", "F", "G", "H", "J",
              "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U",
              "V", "W", "X", "Y", "Z"]


def AddSmudginess(img, Smu):
    """
    模糊处理
    :param img: 输入图像
    :param Smu: 模糊图像
    :return: 添加模糊后的图像
    """
    rows = r(Smu.shape[0] - 50)
    cols = r(Smu.shape[1] - 50)
    adder = Smu[rows:rows + 50, cols:cols + 50]
    adder = cv.resize(adder, (50, 50))
    img = cv.resize(img,(50,50))
    img = cv.bitwise_not(img)
    img = cv.bitwise_and(adder, img)
    img = cv.bitwise_not(img)
    return img


def rot(img, angel, shape, max_angel):
    """
    添加透视畸变
    """
    size_o = [shape[1], shape[0]]
    size = (shape[1]+ int(shape[0] * cos((float(max_angel ) / 180) * 3.14)), shape[0])
    interval = abs(int(sin((float(angel) / 180) * 3.14) * shape[0]))
    pts1 = np.float32([[0, 0], [0, size_o[1]], [size_o[0], 0], [size_o[0], size_o[1]]])
    if angel > 0:
        pts2 = np.float32([[interval, 0], [0, size[1]], [size[0], 0], [size[0] - interval, size_o[1]]])
    else:
        pts2 = np.float32([[0, 0], [interval, size[1]], [size[0] - interval, 0], [size[0], size_o[1]]])
    M = cv.getPerspectiveTransform(pts1, pts2)
    dst = cv.warpPerspective(img, M, size)
    return dst


def rotRandrom(img, factor, size):
    """
    添加放射畸变
    :param img: 输入图像
    :param factor: 畸变的参数
    :param size: 图片目标尺寸
    :return: 放射畸变后的图像
    """
    shape = size
    pts1 = np.float32([[0, 0], [0, shape[0]], [shape[1], 0], [shape[1], shape[0]]])
    pts2 = np.float32([[r(factor), r(factor)], [r(factor), shape[0] - r(factor)], [shape[1] - r(factor), r(factor)],
                       [shape[1] - r(factor), shape[0] - r(factor)]])
    M = cv.getPerspectiveTransform(pts1, pts2)
    dst = cv.warpPerspective(img, M, size)
    return dst


def tfactor(img):
    """
    添加饱和度光照的噪声
    """
    hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV)
    hsv[:, :, 0] = hsv[:, :, 0] * (0.8 + np.random.random() * 0.2)
    hsv[:, :, 1] = hsv[:, :, 1] * (0.3 + np.random.random() * 0.7)
    hsv[:, :, 2] = hsv[:, :, 2] * (0.2 + np.random.random() * 0.8)
    img = cv.cvtColor(hsv, cv.COLOR_HSV2BGR)
    return img


def random_envirment(img, noplate_bg):
    """
    添加自然环境的噪声, noplate_bg为不含车牌的背景图
    """
    bg_index = r(len(noplate_bg))
    env = cv.imread(noplate_bg[bg_index])
    env = cv.resize(env, (img.shape[1], img.shape[0]))
    bak = (img == 0)
    bak = bak.astype(np.uint8) * 255
    inv = cv.bitwise_and(bak, env)
    img = cv.bitwise_or(inv, img)
    return img

 
def GenCh(f, val):
    """
    生成中文字符
    """
    img = Image.new("RGB", (45, 70), (255, 255, 255))  #白色
#     img = Image.new("RGB", (45, 70), (0, 0, 0))  #黑色
    draw = ImageDraw.Draw(img)
#     draw.text((0, 3), val, (0, 0, 0), font=f)
    draw.text((0, 3), val, (0, 0, 0), font=f)
    img =  img.resize((23, 70))
    A = np.array(img)
    return A


def GenCh1(f, val):
    """
    生成英文字符
    """
    img =Image.new("RGB", (23, 70), (255,255,255))#白色
#     img =Image.new("RGB", (23, 70), (0, 0, 0))#黑色
    draw = ImageDraw.Draw(img)
    draw.text((0, 2), val, (0,0,0), font=f)    # val.decode('utf-8')
    A = np.array(img)
    return A

 
def AddGauss(img, level):
    """
    添加高斯模糊
    """ 
    return cv.blur(img, (level * 2 + 1, level * 2 + 1))


def r(val):
    return int(np.random.random() * val)


def AddNoiseSingleChannel(single):
    """
    添加高斯噪声
    """
    diff = 255 - single.max()
    noise = np.random.normal(0, 1 + r(6), single.shape)
    noise = (noise - noise.min()) / (noise.max() - noise.min())
    noise *= diff
    # noise= noise.astype(np.uint8)
    dst = single + noise
    return dst


def addNoise(img):    # sdev = 0.5,avg=10
    img[:, :, 0] = AddNoiseSingleChannel(img[:, :, 0])
    img[:, :, 1] = AddNoiseSingleChannel(img[:, :, 1])
    img[:, :, 2] = AddNoiseSingleChannel(img[:, :, 2])
    return img
 
class GenPlate:
    def __init__(self, fontCh, fontEng, NoPlates):
        self.fontC = ImageFont.truetype(fontCh, 43, 0)
        self.fontE = ImageFont.truetype(fontEng, 60, 0)
        self.img = np.array(Image.new("RGB", (226, 70),(255, 255, 255)))
#         self.img = np.array(Image.new("RGB", (226, 70),(0, 0, 0)))
        self.bg  = cv.resize(cv.imread(r"C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\generate_picture\images\black.jpg"), (226, 70)) 
        # template.bmp:车牌背景图
        self.smu = cv.imread(r"E:\AI_projects\vehicle license plate recognition\car_recognition\data\images\\smu2.jpg")  
        # smu2.jpg:模糊图像
        self.noplates_path = []
        for parent, parent_folder, filenames in os.walk(NoPlates):
            for filename in filenames:
                path = parent + "\\" + filename
                self.noplates_path.append(path)
 
    def draw(self, val):
        offset = 2
        self.img[0:70, offset+8:offset+8+23] = GenCh(self.fontC, val[0])
        self.img[0:70, offset+8+23+6:offset+8+23+6+23] = GenCh1(self.fontE, val[1])
        for i in range(5):
            base = offset + 8 + 23 + 6 + 23 + 17 + i * 23 + i * 6
            self.img[0:70, base:base+23] = GenCh1(self.fontE, val[i+2])
        return self.img
    
    def generate(self, text):
        if len(text) == 7:
            fg = self.draw(text)    # decode(encoding="utf-8")
            fg = cv.bitwise_not(fg)
            com = cv.bitwise_or(fg, self.bg)
#             com = rot(com, r(60)-30, com.shape,30)
#             com = rotRandrom(com, 10, (com.shape[1], com.shape[0]))
#             com = tfactor(com)
#             com = random_envirment(com, self.noplates_path)
#             com = AddGauss(com, 1+r(4))
#             com = addNoise(com)
            return com

    @staticmethod
    def genPlateString(pos, val):
        """
        生成车牌string,存为图片
        生成车牌list,存为label
        """
        plateStr = ""
        plateList=[]
        box = [0, 0, 0, 0, 0, 0, 0]
        if pos != -1:
            box[pos] = 1
        for unit, cpos in zip(box, range(len(box))):
            if unit == 1:
                plateStr += val
                plateList.append(val)
            else:
                if cpos == 0:
                    plateStr += chars[r(31)]
                    plateList.append(plateStr)
                elif cpos == 1:
                    plateStr += chars[41 + r(24)]
                    plateList.append(plateStr)
                else:
                    plateStr += chars[31 + r(34)]
                    plateList.append(plateStr)
        plate = [plateList[0]]
        b = [plateList[i][-1] for i in range(len(plateList))]
        plate.extend(b[1:7])
        return plateStr, plate

    @staticmethod
    def genBatch(batchsize, outputPath, size):
        """
        将生成的车牌图片写入文件夹,对应的label写入label.txt
        :param batchsize:  批次大小
        :param outputPath: 输出图像的保存路径
        :param size: 输出图像的尺寸
        :return: None
        """
        if not os.path.exists(outputPath):
            os.mkdir(outputPath)
        outfile = open(r'C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\label_yellow.txt',
                       'w', encoding='utf-8')
        for i in range(batchsize):
            plateStr, plate = G.genPlateString(-1, -1)
            img = G.generate(plateStr)
            img = cv.resize(img, size)            
            content = "".join(plate)
            cv.imwrite(outputPath + "\\" + str(i).zfill(2) + ".jpg", img)
            outfile.write("./train/"+str(i).zfill(2)+".jpg"+'\t'+content +"\n")


G = GenPlate(r"E:\AI_projects\vehicle license plate recognition\car_recognition\data\font\platech.ttf", 
             r'E:\AI_projects\vehicle license plate recognition\car_recognition\data\font\platechar.ttf', 
             r"E:\AI_projects\vehicle license plate recognition\car_recognition\data\NoPlates")
G.genBatch(1000, r'C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\test_in_yellow', (272, 72))

字符和背景反转

#将车牌黑色反转
import cv2
import random

def addNoise(img):    # sdev = 0.5,avg=10
    img[:, :, 0] = AddNoiseSingleChannel(img[:, :, 0])
    img[:, :, 1] = AddNoiseSingleChannel(img[:, :, 1])
    img[:, :, 2] = AddNoiseSingleChannel(img[:, :, 2])
    return img
sample_cp=cv.resize(cv2.imread(r"C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\generate_picture\images\yellow.bmp"), (272, 72))
path=r'C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\test_in_yellow'
for file in os.listdir(path):
    if file.endswith('.jpg'):
        image=os.path.join(path,file)
        img=cv2.imread(image)
        
        for i in range(72):
            for j in range(272):
                if img[i][j][0]>50:
                    img[i][j][0]=0    #黑色
                    img[i][j][1]=0
                    img[i][j][2]=0
                else:
                    img[i][j][0]=255  #白色
                    img[i][j][1]=255
                    img[i][j][2]=255
                    
        for i in range(72):
            for j in range(272):
                if img[i][j][0]<50 and img[i][j][1]<50 and  img[i][j][2]<50:
                    img[i][j][0]=img[i][j][0]
                    img[i][j][1]=img[i][j][1]
                    img[i][j][2]=img[i][j][2]
                else:
                    img[i][j][0]=sample_cp[i][j][0] #+random.randint(0,9)
                    img[i][j][1]=sample_cp[i][j][1] #+random.randint(0,5)
                    img[i][j][2]=sample_cp[i][j][2]  #+random.randint(0,10)
        addNoise(img)
                    
        images=os.path.join(path,file)
        cv2.imwrite(images,img)

字符和底牌相结合,并进行畸变、模糊、旋转等各种方法,构造出多种多样的车牌图像。

import cv2
import numpy as np
from math import cos,sin
import os


def rot(img, angel, shape, max_angel):
    """
    添加透视畸变
    """
    size_o = [shape[1], shape[0]]
    size = (shape[1]+ int(shape[0] * cos((float(max_angel ) / 180) * 3.14)), shape[0])
    interval = abs(int(sin((float(angel) / 180) * 3.14) * shape[0]))
    pts1 = np.float32([[0, 0], [0, size_o[1]], [size_o[0], 0], [size_o[0], size_o[1]]])
    if angel > 0:
        pts2 = np.float32([[interval, 0], [0, size[1]], [size[0], 0], [size[0] - interval, size_o[1]]])
    else:
        pts2 = np.float32([[0, 0], [interval, size[1]], [size[0] - interval, 0], [size[0], size_o[1]]])
    M = cv2.getPerspectiveTransform(pts1, pts2)
    dst = cv2.warpPerspective(img, M, size)
    return dst


def rotRandrom(img, factor, size):
    """
    添加放射畸变
    :param img: 输入图像
    :param factor: 畸变的参数
    :param size: 图片目标尺寸
    :return: 放射畸变后的图像
    """
    shape = size
    pts1 = np.float32([[0, 0], [0, shape[0]], [shape[1], 0], [shape[1], shape[0]]])
    pts2 = np.float32([[r(factor), r(factor)], [r(factor), shape[0] - r(factor)], [shape[1] - r(factor), r(factor)],
                       [shape[1] - r(factor), shape[0] - r(factor)]])
    M = cv2.getPerspectiveTransform(pts1, pts2)
    dst = cv2.warpPerspective(img, M, size)
    return dst

def r(val):
    return int(np.random.random() * val)

def tfactor(img):
    """
    添加饱和度光照的噪声
    """
    hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
    hsv[:, :, 0] = hsv[:, :, 0] * (0.8 + np.random.random() * 0.2)
    hsv[:, :, 1] = hsv[:, :, 1] * (0.3 + np.random.random() * 0.7)
    hsv[:, :, 2] = hsv[:, :, 2] * (0.2 + np.random.random() * 0.8)
    img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    return img


def random_envirment(img, noplate_bg):
    """
    添加自然环境的噪声, noplate_bg为不含车牌的背景图
    """
    bg_index = r(len(noplate_bg))
    env = cv2.imread(noplate_bg[bg_index])
    env = cv2.resize(env, (img.shape[1], img.shape[0]))
    bak = (img == 0)
    bak = bak.astype(np.uint8) * 255
    inv = cv2.bitwise_and(bak, env)
    img = cv2.bitwise_or(inv, img)
    return img

def AddGauss(img, level):
    return cv2.blur(img, (level * 2 + 1, level * 2 + 1))


def AddNoiseSingleChannel(single):
    """
    添加高斯噪声
    """
    diff = 255 - single.max()
    noise = np.random.normal(0, 1 + r(6), single.shape)
    noise = (noise - noise.min()) / (noise.max() - noise.min())
    noise *= diff
    # noise= noise.astype(np.uint8)
    dst = single + noise
    return dst

def addNoise(img):    # sdev = 0.5,avg=10
    img[:, :, 0] = AddNoiseSingleChannel(img[:, :, 0])
    img[:, :, 1] = AddNoiseSingleChannel(img[:, :, 1])
    img[:, :, 2] = AddNoiseSingleChannel(img[:, :, 2])
    return img
  
path0=r"C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\generate_picture\NoPlates"
noplates_path=[]
for file in os.listdir(path0):
    noplates_path.append(os.path.join(path0,file))

# bg=cv2.resize(cv2.imread(r"C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\generate_picture\images\new.jpg"), (272, 72))
# fg=cv2.imread(r'C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\picture_new\00.jpg')

# com=fg
# com = rot(com, r(30)-10, com.shape,30)
# com = rotRandrom(com, 5, (com.shape[1], com.shape[0]))
# com = tfactor(com)
# # com = random_envirment(com,noplates_path)  
# # com = AddGauss(com, 1+r(4))
# com = addNoise(com)

# cv2.imshow('com',com)
# cv2.waitKey(0)
# cv2.destroyAllWindows()


# fg = cv2.bitwise_not(fg)
# com = cv2.bitwise_or(fg, bg)
path=r"C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\test_in_yellow"
path1=r"C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\test_in_yellow"
for file in os.listdir(path):
    if file.endswith('.jpg'):
        fg=cv2.imread(os.path.join(path,file))
        com=fg
        com = rot(com, r(30)-10, com.shape,30)
        com = rotRandrom(com, 5, (com.shape[1], com.shape[0]))
        com = tfactor(com)
        com = random_envirment(com,noplates_path)
        com = AddGauss(com, 1+r(4))
        com = addNoise(com)
        
        images=os.path.join(path1,file)
        cv2.imwrite(images,com)
  

## (3) 生产新能源车牌

新能源车牌的生成办法与黄色车牌的生成办法是一样的,但是新能源车牌长度比蓝牌、黄牌多一位,而且指定第三个字符为D或者F,但是我们我们在生成时不考虑,只是修改代码让程序生成同样长度的车牌即可。

#黄色车牌生成
import os
import cv2 as cv
import numpy as np
from math import *
from PIL import ImageFont
from PIL import Image
from PIL import ImageDraw


index = {"京": 0, "沪": 1, "津": 2, "渝": 3, "冀": 4, "晋": 5, "蒙": 6, "辽": 7, "吉": 8, "黑": 9,
              "苏": 10, "浙": 11, "皖": 12, "闽": 13, "赣": 14, "鲁": 15, "豫": 16, "鄂": 17, "湘": 18, "粤": 19,
              "桂": 20, "琼": 21, "川": 22, "贵": 23, "云": 24, "藏": 25, "陕": 26, "甘": 27, "青": 28, "宁": 29,
              "新": 30, "0": 31, "1": 32, "2": 33, "3": 34, "4": 35, "5": 36, "6": 37, "7": 38, "8": 39,
              "9": 40, "A": 41, "B": 42, "C": 43, "D": 44, "E": 45, "F": 46, "G": 47, "H": 48, "J": 49,
              "K": 50, "L": 51, "M": 52, "N": 53, "P": 54, "Q": 55, "R": 56, "S": 57, "T": 58, "U": 59,
              "V": 60, "W": 61, "X": 62, "Y": 63, "Z": 64}

chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑",
              "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤",
              "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁",
              "新", "0", "1", "2", "3", "4", "5", "6", "7", "8",
              "9", "A", "B", "C", "D", "E", "F", "G", "H", "J",
              "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U",
              "V", "W", "X", "Y", "Z"]


def AddSmudginess(img, Smu):
    """
    模糊处理
    :param img: 输入图像
    :param Smu: 模糊图像
    :return: 添加模糊后的图像
    """
    rows = r(Smu.shape[0] - 20)  #50
    cols = r(Smu.shape[1] - 20)
    adder = Smu[rows:rows + 20, cols:cols + 20]
    adder = cv.resize(adder, (20, 20))
    img = cv.resize(img,(20,20))
    img = cv.bitwise_not(img)
    img = cv.bitwise_and(adder, img)
    img = cv.bitwise_not(img)
    return img


def rot(img, angel, shape, max_angel):
    """
    添加透视畸变
    """
    size_o = [shape[1], shape[0]]
    size = (shape[1]+ int(shape[0] * cos((float(max_angel ) / 180) * 3.14)), shape[0])
    interval = abs(int(sin((float(angel) / 180) * 3.14) * shape[0]))
    pts1 = np.float32([[0, 0], [0, size_o[1]], [size_o[0], 0], [size_o[0], size_o[1]]])
    if angel > 0:
        pts2 = np.float32([[interval, 0], [0, size[1]], [size[0], 0], [size[0] - interval, size_o[1]]])
    else:
        pts2 = np.float32([[0, 0], [interval, size[1]], [size[0] - interval, 0], [size[0], size_o[1]]])
    M = cv.getPerspectiveTransform(pts1, pts2)
    dst = cv.warpPerspective(img, M, size)
    return dst


def rotRandrom(img, factor, size):
    """
    添加放射畸变
    :param img: 输入图像
    :param factor: 畸变的参数
    :param size: 图片目标尺寸
    :return: 放射畸变后的图像
    """
    shape = size
    pts1 = np.float32([[0, 0], [0, shape[0]], [shape[1], 0], [shape[1], shape[0]]])
    pts2 = np.float32([[r(factor), r(factor)], [r(factor), shape[0] - r(factor)], [shape[1] - r(factor), r(factor)],
                       [shape[1] - r(factor), shape[0] - r(factor)]])
    M = cv.getPerspectiveTransform(pts1, pts2)
    dst = cv.warpPerspective(img, M, size)
    return dst


def tfactor(img):
    """
    添加饱和度光照的噪声
    """
    hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV)
    hsv[:, :, 0] = hsv[:, :, 0] * (0.8 + np.random.random() * 0.2)
    hsv[:, :, 1] = hsv[:, :, 1] * (0.3 + np.random.random() * 0.7)
    hsv[:, :, 2] = hsv[:, :, 2] * (0.2 + np.random.random() * 0.8)
    img = cv.cvtColor(hsv, cv.COLOR_HSV2BGR)
    return img


def random_envirment(img, noplate_bg):
    """
    添加自然环境的噪声, noplate_bg为不含车牌的背景图
    """
    bg_index = r(len(noplate_bg))
    env = cv.imread(noplate_bg[bg_index])
    env = cv.resize(env, (img.shape[1], img.shape[0]))
    bak = (img == 0)
    bak = bak.astype(np.uint8) * 255
    inv = cv.bitwise_and(bak, env)
    img = cv.bitwise_or(inv, img)
    return img

 
def GenCh(f, val):
    """
    生成中文字符
    """
    img = Image.new("RGB", (45, 70), (255, 255, 255))  #白色
#     img = Image.new("RGB", (45, 70), (0, 0, 0))  #黑色
    draw = ImageDraw.Draw(img)
#     draw.text((0, 3), val, (0, 0, 0), font=f)
    draw.text((0, 2), val, (0, 0, 0), font=f)
    img =  img.resize((19, 70))
    A = np.array(img)
    return A


def GenCh1(f, val):
    """
    生成英文字符
    """
    img =Image.new("RGB", (19, 70), (255,255,255))#白色
#     img =Image.new("RGB", (23, 70), (0, 0, 0))#黑色
    draw = ImageDraw.Draw(img)
    draw.text((0, 2), val, (0,0,0), font=f)    # val.decode('utf-8')
    A = np.array(img)
    return A

 
def AddGauss(img, level):
    """
    添加高斯模糊
    """ 
    return cv.blur(img, (level * 2 + 1, level * 2 + 1))


def r(val):
    return int(np.random.random() * val)


def AddNoiseSingleChannel(single):
    """
    添加高斯噪声
    """
    diff = 255 - single.max()
    noise = np.random.normal(0, 1 + r(6), single.shape)
    noise = (noise - noise.min()) / (noise.max() - noise.min())
    noise *= diff
    # noise= noise.astype(np.uint8)
    dst = single + noise
    return dst


def addNoise(img):    # sdev = 0.5,avg=10
    img[:, :, 0] = AddNoiseSingleChannel(img[:, :, 0])
    img[:, :, 1] = AddNoiseSingleChannel(img[:, :, 1])
    img[:, :, 2] = AddNoiseSingleChannel(img[:, :, 2])
    return img
 
class GenPlate:
    def __init__(self, fontCh, fontEng, NoPlates):
        self.fontC = ImageFont.truetype(fontCh, 43, 0)
        self.fontE = ImageFont.truetype(fontEng, 52, 0)  #60--52
        self.img = np.array(Image.new("RGB", (226, 70),(255, 255, 255)))
#         self.img = np.array(Image.new("RGB", (226, 70),(0, 0, 0)))
        self.bg  = cv.resize(cv.imread(r"C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\generate_picture\images\black.jpg"), (226, 70)) 
        # template.bmp:车牌背景图
        self.smu = cv.imread(r"E:\AI_projects\vehicle license plate recognition\car_recognition\data\images\\smu2.jpg")  
        # smu2.jpg:模糊图像
        self.noplates_path = []
        for parent, parent_folder, filenames in os.walk(NoPlates):
            for filename in filenames:
                path = parent + "\\" + filename
                self.noplates_path.append(path)
 
    def draw(self, val):
        offset = 2
        self.img[0:70, offset+6:offset+6+19] = GenCh(self.fontC, val[0])
        self.img[0:70, offset+6+19+7:offset+6+19+7+19] = GenCh1(self.fontE, val[1])
        for i in range(6):
            base = offset + 6 + 19 + 7 + 19 + 17 + i * 19 + i * 7
            self.img[0:70, base:base+19] = GenCh1(self.fontE, val[i+2])  #23--19  6--7  8--6
        return self.img
    
    def generate(self, text):
        if len(text) == 8:
            fg = self.draw(text)    # decode(encoding="utf-8")
            fg = cv.bitwise_not(fg)
            com = cv.bitwise_or(fg, self.bg)
#             com = rot(com, r(60)-30, com.shape,30)
#             com = rotRandrom(com, 10, (com.shape[1], com.shape[0]))
#             com = tfactor(com)
#             com = random_envirment(com, self.noplates_path)
#             com = AddGauss(com, 1+r(4))
#             com = addNoise(com)
            return com

    @staticmethod
    def genPlateString(pos, val):
        """
        生成车牌string,存为图片
        生成车牌list,存为label
        """
        plateStr = ""
        plateList=[]
        box = [0, 0, 0, 0, 0, 0, 0,0]
        if pos != -1:
            box[pos] = 1
        for unit, cpos in zip(box, range(len(box))):
            if unit == 1:
                plateStr += val
                plateList.append(val)
            else:
                if cpos == 0:
                    plateStr += chars[r(31)]  #31
                    plateList.append(plateStr)
                elif cpos == 1:
                    plateStr += chars[41 + r(24)]  #41  24
                    plateList.append(plateStr)
                else:
                    plateStr += chars[31 + r(34)]  #31  34
                    plateList.append(plateStr)
        plate = [plateList[0]]
        b = [plateList[i][-1] for i in range(len(plateList))]
        plate.extend(b[1:8])
        return plateStr, plate

    @staticmethod
    def genBatch(batchsize, outputPath, size):
        """
        将生成的车牌图片写入文件夹,对应的label写入label.txt
        :param batchsize:  批次大小
        :param outputPath: 输出图像的保存路径
        :param size: 输出图像的尺寸
        :return: None
        """
        if not os.path.exists(outputPath):
            os.mkdir(outputPath)
        outfile = open(r'C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\label_new.txt',
                       'w', encoding='utf-8')
        for i in range(batchsize):
            plateStr, plate = G.genPlateString(-1, -1)
            img = G.generate(plateStr)
            img = cv.resize(img, size)            
            content = "".join(plate)
            cv.imwrite(outputPath + "\\" + str(i).zfill(2) + ".jpg", img)
            outfile.write("./train/"+str(i).zfill(2)+".jpg"+'\t'+content +"\n")


G = GenPlate(r"E:\AI_projects\vehicle license plate recognition\car_recognition\data\font\platech.ttf", 
             r'E:\AI_projects\vehicle license plate recognition\car_recognition\data\font\platechar.ttf', 
             r"E:\AI_projects\vehicle license plate recognition\car_recognition\data\NoPlates")
G.genBatch(1000, r'C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\test_in_new', (272, 72))

以上为车牌生成部分代码,其他代码参考之前的部分

(4) 重命名各种车牌名称,使得它适合训练便签生成要求

#将以数字命名的图片转换为省份编号+车牌命名
import os
import pandas as pd

path=r'C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\label_yellow.txt'

num=[]
with open(path,'rb') as f:
    lines=f.readlines()
for line in lines:
    data=line.decode('utf-8')#.encode('gb2312')
    data1=data.split('\t')[0]
    data2=data.split('\t')[1].split('\r')[0]
    num.append([data1,data2])
    
number=pd.DataFrame(num,columns=['p','j'])

CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
         '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
         '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',
         '新',
         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
         'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
         'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
         'W', 'X', 'Y', 'Z','_'
         ]
dicts = {'A01':'京','A02':'津','A03':'沪','B02':'蒙',
        'S01':'皖','S02':'闽','S03':'粤','S04':'甘',
        'S05': '贵', 'S06': '鄂', 'S07': '冀', 'S08': '黑', 'S09': '湘',
        'S10': '豫', 'S12': '吉', 'S13': '苏', 'S14': '赣', 'S15': '辽',
        'S17': '川', 'S18': '鲁', 'S22': '浙',
        'S30':'渝', 'S31':'晋', 'S32':'桂', 'S33':'琼', 'S34':'云', 'S35':'藏',
        'S36':'陕','S37':'青', 'S38':'宁', 'S39':'新'}
path_root=r'C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\test_in_yellow'

for k in range(len(number)): 
    for t in range(len(CHARS)):
        pp=number['p'][k].split('/train/')[1]
        if number['j'][k][0]==CHARS[t]:
            original_name=os.path.join(path_root,pp)            
            d=list(dicts.keys())[t] 
            pd=number['j'][k]
            dd=d+'_'+pd[1:]+'_0'+'.jpg'
            post_name=os.path.join(path_root,dd) 
            if os.path.exists(original_name):
                if not os.path.exists(post_name):
                    os.rename(original_name,post_name)

(5) 统计各个省份的车牌数量

主要是确认中文字符数量均衡

import os

path=r'C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\picture_real'

S=[]
for file in os.listdir(path):
    a=file.split('_')[0]
    S.append(a)

Set=set(S)
Dict={}
for item in Set:
    Dict.update({item:S.count(item)})
print(Dict)

(6) 把车牌移动到训练和测试两个文件夹中

import os
import shutil

path_from=r'C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\test_in_new'
path_to=r'C:\Users\lenovo\Desktop\Plate_Recognition-LPRnet-master\Plate_Recognition-LPRnet-master\test'
for file in os.listdir(path_from):
    image=os.path.join(path_from,file)
#     if not os.path.join(path_to,file):
    shutil.move(image,path_to)

(7) 模型训练及测试

接下来进行模型训练。。。 (略)

总结

用第三种方法 LPRNet 来进行车牌识别这个项目是一个很不错的,涉及到图像处理,深度学习等各种图像相关的知识,完成这个项目训练后,项目工程能力得到较大提升,对于以后找工作和工作中遇到的问题处理都有比较大的帮助。

能认真看到这的小伙伴帮忙点个赞!文章来源地址https://www.toymoban.com/news/detail-409090.html

到了这里,关于车牌识别的N种办法——从OCR到深度学习的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【毕业设计】python 机器视觉 车牌识别 - opencv 深度学习 机器学习

    🚩 基于python 机器视觉 的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:2分 🧿 选题指导, 项目分享: https://gitee.com/dancheng-senior/project-sharing-1/blob/master/%E6%AF%95%E8%AE%BE%E6%8C%87%E5%AF%BC/README.md 车牌识别其实是个经典的机器视觉任

    2024年02月06日
    浏览(88)
  • 竞赛保研 python 机器视觉 车牌识别 - opencv 深度学习 机器学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于python 机器视觉 的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 车牌识别其实是个经典的机器视觉任务了,

    2024年02月04日
    浏览(50)
  • 挑战杯 python 机器视觉 车牌识别 - opencv 深度学习 机器学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于python 机器视觉 的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 车牌识别其实是个经典的机器视觉任务了,

    2024年02月21日
    浏览(51)
  • 【智慧交通项目实战】 《 OCR车牌检测与识别》(二):基于YOLO的车牌检测

    👨‍💻 作者简介: CSDN、阿里云人工智能领域博客专家,新星计划计算机视觉导师,百度飞桨PPDE,专注大数据与AI知识分享。✨ 公众号:GoAI的学习小屋 ,免费分享书籍、简历、导图等,更有交流群分享宝藏资料,关注公众号回复“加群”或➡️ 点击链接 加群。 🎉 专栏推

    2024年02月08日
    浏览(74)
  • 【智慧交通项目实战】《 OCR车牌检测与识别》(一)

    👨‍💻 作者简介: CSDN、阿里云人工智能领域博客专家,新星计划计算机视觉导师,百度飞桨PPDE,专注大数据与AI知识分享。✨ 公众号:GoAI的学习小屋 ,免费分享书籍、简历、导图等,更有交流群分享宝藏资料,关注公众号回复“加群”或➡️ 点击链接 加群。 🎉 专栏推

    2024年02月07日
    浏览(60)
  • python 机器视觉 车牌识别 - opencv 深度学习 机器学习 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于python 机器视觉 的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 车牌识别其实是个经典的机器视觉任务了,

    2024年02月06日
    浏览(57)
  • 计算机竞赛 python 机器视觉 车牌识别 - opencv 深度学习 机器学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于python 机器视觉 的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 车牌识别其实是个经典的机器视觉任务了,

    2024年02月12日
    浏览(65)
  • 机器视觉毕业设计 python车牌识别系统 - opencv 深度学习 机器学习

    # 1 前言 🚩 基于python 机器视觉 的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:2分 车牌识别其实是个经典的机器视觉任务了,通过图像处理技术检测、定位、识别车牌上的字符,实现计算机对车牌的智能管理功能。如今在

    2024年02月13日
    浏览(51)
  • 基于深度学习的车牌+车辆识别(YOLOv5和CNN)

    yolov5车牌识别+车辆识别 行人识别yolov5和v7对比 一、综述 二、车牌检测 本篇文章是面向的是小白,想要学习深度学习上的应用,本文中目前应用了YOLO v5和CNN来对车牌进行处理,最终形成一个完整的车牌信息记录,如果我写的有什么不对或者需要改进的地方࿰

    2024年02月04日
    浏览(49)
  • 车牌识别系统Python,基于深度学习CNN卷积神经网络算法

    车牌识别系统,基于Python实现,通过TensorFlow搭建CNN卷积神经网络模型,对车牌数据集图片进行训练最后得到模型,并基于Django框架搭建网页端平台,实现用户在网页端输入一张图片识别其结果,并基于Pyqt5搭建桌面端可视化界面。 在智能交通和车辆监控领域,车牌识别技术扮

    2024年02月07日
    浏览(74)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包