cuda11.6配置torch环境(运行yolov5项目)

这篇具有很好参考价值的文章主要介绍了cuda11.6配置torch环境(运行yolov5项目)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

从配置环境到运行项目

首先推荐一个b站的一个up视频,yolov5目标检测,这里up用的是cuda10.2,我用的是11.6,主要选择什么,大家都是依据自己的显卡(我这里是gtx 3060)。

安装Anaconda的安装

1.下载地址:Anaconda官网

cuda11.6配置torch环境(运行yolov5项目)
具体安装教程这里不叙述了,可以看安装Anaconda教程

cuda(敲重点)

cuda11.6配置torch环境(运行yolov5项目)
右键英伟达图标,打开英伟达控制面板,
cuda11.6配置torch环境(运行yolov5项目)
点击帮助-点击系统信息-点击组件
cuda11.6配置torch环境(运行yolov5项目)
找到cuda对应版本,比如我这里是11.6,所以去官网下载对应的11.6的版本。
cuda官网cuda官网
找到cuda11.6.x
cuda11.6配置torch环境(运行yolov5项目)
下载下来,然后安装,安装教程cuda安装教程
然后注意,如果安装的是11.6版本的cuda,请选择11.6对于的CUDNN,然后继续看上面的教程。

下载torch(再次敲重点)

如果你之前Anaconda设置了清华源镜像,千万不要用conda install torch因为这里会给你cpu版本,也就是下这个包,你只能用cpu跑不能调用gpu。所以用pip install,这里给11.6版本cuda的安装torch的命令:

pip install torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu116

直接用就行。
安装好之后,进Anaconda的prompt进入虚拟环境,
cuda11.6配置torch环境(运行yolov5项目)
代码:

import torch
print(torch.cuda.is_available())#cuda是否可用

然后我运行的项目就是开头b站视频里的项目。主要给大家看看防止绕弯路。文章来源地址https://www.toymoban.com/news/detail-409116.html

到了这里,关于cuda11.6配置torch环境(运行yolov5项目)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOv5项目实现口罩检测、目标检测(免费提供数据集2000+图片和标注以及所有代码)可以在多种平台上运行(pycharm+CUDA、colab、国内GPU云平台)图片形式、rstp形式、视频形式等

    相信很多朋友最近想入门计算机视觉方面,但是对于怎么入门还不是很了解,在这个过程中会遇到很多的问题,例如:找不到学习资源、软件不会安装等等。目标检测只是计算机视觉的一个方面,但是目前仍处于热门的研究话题。而目标检测的方法分为one-stage和two-stage方法,

    2024年02月03日
    浏览(63)
  • 【多版本cuda自由切换】在ubuntu上安装多个版本的CUDA,并且可以随时切换cuda-11.3//cuda-11.8//cuda-11.6//cuda-11.2

    问题描述         项目开发中,不同的项目可能对不同的cuda版本有所要求,常见的是这几种cuda-11.3//cuda-11.8//cuda-11.6,按照之前的认知,一个主机只能安装一个版本的cuda,否则会引起环境混乱,知道cuda底层逻辑的人都知道这有多么扯蛋,对吧。         也正是因为受到这个

    2024年02月03日
    浏览(54)
  • Windows配置深度学习环境——torch+CUDA

    这里基于读者已经有使用Python的相关经验,就不介绍Python的安装过程。 win10+mx350+Python3.7.4+CUDA11.4.0+cudnn11.4 torch 1.11.0+cu113 torchaudio 0.11.0 torchvision 0.12.0+cu113 一般来说在命令行界面输入python就可以了解python版本。 也可以使用如下代码查询python版本。 以下是torch与Python版本的对应关

    2024年01月25日
    浏览(58)
  • 解决CUDA 11.6版本对应的tensorflow-gpu版本问题

    个人电脑相关配置版本信息 (超级超级新的版本,以至于适配方面花了很长时间来搞) cuda  11.6 cudnn  8.9.0 python  3.10 对应安装的gpu版本 tensorflow-gpu  2.10.0 对应代码 具体怎么安装的我已经放在文章底部啦,改镜像源什么的也不多说~ 感谢参考嘿(-v- ---------------------------------

    2024年02月08日
    浏览(59)
  • Yolov5环境搭建+运行过程

    目录 前言 一、工具资源下载 二、搭建环境配置和运行测试 1.安装anaconda,并创建环境 2.使用pycharm  3.安装pytorch1.5.1以及其他库 4.测试 总结 这是我个人在使用yolov5过程中的一些心得,搭建环境就让我爆炸,最后也是成功运行起来。其中也参考了很多其他人博客的文章,记录下

    2024年02月12日
    浏览(43)
  • 深度学习—Python、Cuda、Cudnn、Torch环境配置搭建

    近期由于毕设需要使用Yolo,于是经过两天捣腾,加上看了CSDN上各位大佬的经验帖后,成功搭建好了GPU环境,并能成功使用。因而在此写下这次搭建的历程。 万事开头难,搭建环境很费时间,如果一开始版本不对应,到后面就要改来改去,很麻烦。首先要注意以下事项: 1.

    2024年02月11日
    浏览(211)
  • Ubuntu20.04下载cuda11.3+cuDNN8.2.0,卸载cuda11.6+cuDNN8.4全记录【保姆级教程】

    CUDA(Compute Unified Device Architecture)是由NVIDIA公司推出的一种高性能并行计算架构。它利用GPU的并行处理能力,能够显著提高计算效率,尤其在科学计算、数据分析、深度学习等领域具有广泛应用。CUDA提供了一套编程模型和API,使开发人员能够利用GPU并行执行计算任务,从而获

    2024年02月05日
    浏览(97)
  • 学习记录:Windows系统cuda11.6,安装pytorch1.12.0、python3.9

    1、查看显卡相关信息:nvidia-smi。显卡版本531.18,最大可以安装cuda12.1版本,安装步骤上一篇博客讲解过。 2、查看cuda版本:nvcc -V 3、查看anaconda是否安装:conda -V 4、查询cuda11.6对应的pytorch版本:https://pytorch.org/get-started/previous-versions/ 显示对应的pytorch1.12.0、1.12.1,接着查询适

    2023年04月17日
    浏览(48)
  • win下pytorch安装—cuda11.6 + cudnn8.4 + pytorch1.12 + tensorRT(pycuda)

    写在前面 博主这里装的是cuda11.7,最后一步tensorRT运行的时候有个pycuda的安装,它的最新版本只支持到cuda11.6,所以博主最后是又把cuda11.7卸载后重新安装了11.6,安装过程和11.7一样。pytorch对应的版本也应该修改,但过程都一样。 下载地址:cuda下载官网链接 这里有个前置工作

    2024年02月11日
    浏览(50)
  • win10+2019+cuda11.6 nvcc fatal : Cannot find compiler ‘cl.exe‘ in PATH

    第一步: 在系统变量无名称变量 Path 列表中添加如下 2 个位置 C:Program Files (x86)Microsoft Visual Studio2019CommunityVCToolsMSVC*14.27.29110*(根据自己环境该码不同)binHostx64x64 C:Program Files (x86)Microsoft Visual Studio2019CommunityCommon7IDE 第二步: 在系统变量中新建一个变量起名为 LIB,

    2024年02月09日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包