四边形不等式学习笔记

这篇具有很好参考价值的文章主要介绍了四边形不等式学习笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

简要题意

四边形不等式是一种 dp 优化策略。多用于 2D DP。

内容

对于区间 \([l,r]\) 带来的贡献 \(w(l,r)\),如果其满足:

对于 \(L\leq l\leq r \leq R\)\(w(L,r)+w(l,R)\leq w(L,R)+w(l,r)\)

则称 \(w\) 满足四边形不等式。特别地,如果上式符号取等,则称其满足四边形恒等式

注:上面的不等式可以记成:交叉小于包含

四边形不等式优化基础:对于一个 dp \(f(i,j)\),如果其最优决策点(即第三维枚举的最优位置) \(s(i,j)\) 满足 \({s(i,j-1)\leq s(i,j) \leq s(i+1,j)}\),则可以用此方法将时间复杂度优化到 \(O(\max i \cdot \max j)\)

类型一

对于一类 dp(多见于把一个序列分成 \(k\) 段,最小化或最大化每一段段贡献的的和),其状态转移方程为(\(\min\) 也可以换成 \(\max\)):

\[f(i,j)=\min_{k=1}^{i-1}{(f(k,j-1)+w(k+1,j))} \]

\(w\) 满足四边形不等式。则:

  • \(f\) 也满足四边形不等式。
  • \(f\) 满足四边形不等式基础。

SPOJ LARMY - Lannister Army

给出一个长为 \(N\) 的序列 \(H\),你需要将其分成 \(K\) 段,使得每一段的逆序对数量之和最小。输出最小值。

\(1 \leq K \leq N \leq 5\times10^3,1 \leq H_i \leq 10^5\)

不能再板的四边形不等式吧。先推出每一个序列的每一个区间的逆序对数量,然后四边形不等式即可。

时间复杂度 \(O(N^2)\)文章来源地址https://www.toymoban.com/news/detail-409603.html

P4767 [IOI2000]邮局

在数轴上分布着 \(V\) 个村庄。第 \(i\) 个村庄在 \(a_i\)。两个村庄的距离为这两个村庄的位置之差得绝对值。你需要在一些村庄中修建邮局,你需要输出每一个村庄到离其最近的邮局的距离之和的最小值。

\(1 \leq P \leq 300,1 \leq P \leq V \leq 3 \times 10^3,1 \leq a_i \leq 10^4\)

这道题可以看成将村庄排序后分成 \(P\) 段,每段在其中点修建一个邮局。最小化每段到其中点的距离和的和。

可以递推出每段的贡献 \(w(i,j)=w(i-1,j)+a_j-a_{\lfloor (i+j)\div 2\rfloor}\)

然后,然后就没了。

时间复杂度 \(O(V^2)\)

类型二

对于一类区间 dp 问题(多见于石子合并类),其状态转移方程为(\(\min\) 也可以换成 \(\max\)):

\[f(i,j)=\min_{k=i}^{j-1}{(f(i,k)+f(k+1,j)+w(i,j))} \]

\(w\) 满足四边形不等式。则:

  • \(f\) 也满足四边形不等式。
  • \(f\) 满足四边形不等式基础。

P1775 石子合并(弱化版)

有一个长度为 \(N\) 的序列 \(m\)。你可以合并相邻的两个元素 \(m_i,m_j\),变成 \(m_i+m_j\),并花费 \(m_i+m_j\) 的代价。输出最小代价和。

\(1 \leq N \leq 300,1 \leq m_i \leq 10^3\)

这道题暴力 \(O(N^3)\) 前缀和 + 区间 DP 可以过,但是容易发现 \(w(i,j)=\sum_{k=i}^{j} m_k\) 满足四边形不等式。于是可以使用四边形不等式优化。

时间复杂度 \(O(N^2)\)

到了这里,关于四边形不等式学习笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 马尔可夫不等式、切比雪夫不等式

    在概率论中,马尔可夫不等式给出了随机变量的非负函数大于或等于某个正常数 ϵ epsilon ϵ 的概率的上限 下图来自:Markov inequality 下图为任一分布的概率密度函数图像 图片来自:Mathematical Foundations of Computer Networking: Probability a a a 越大,阴影部分的面积越小,即概率越小 使

    2024年02月04日
    浏览(27)
  • hive udf 判断四边形是否为矩形

    hive udf中经常要做判断四边形是否为矩形,所以写了这个udf如下:

    2024年02月12日
    浏览(27)
  • 马尔科夫不等式和坎泰利不等式的证明

    马尔科夫不等式(Markov’s inequality) 对于随机变量 X X X ,有 P ( ∣ X ∣ ⩾ ε ) ⩽ E ∣ X ∣ k ε k , ε 0 , k ∞ Pleft( left| X right|geqslant varepsilon right) leqslant frac{Eleft| X right|^k}{varepsilon ^k},varepsilon 0,kinfty P ( ∣ X ∣ ⩾ ε ) ⩽ ε k E ∣ X ∣ k ​ , ε 0 , k ∞ 证明: P ( ∣ X ∣ ⩾ ε

    2024年02月08日
    浏览(29)
  • 优化问题----等式约束与不等式约束问题求解

    目录 先总结一波: 1. 等式约束问题求解 (1)一阶必要条件 (2)二阶充分条件 2.不等式约束问题求解 2.1 可行下降方向 2.2 KTT条件(Kuhn-Tucker条件) (1)Gordan定理 (2)Fritz John定理 (3)KTT条件  (4)KTT的一个应用实例 对于无约束极值问题,可以采用解析方法和直接方法两

    2024年02月05日
    浏览(37)
  • unity3d,平面和四边形的区别是什么

    在Unity中,平面和四边形都是基础的几何形状,用于创建游戏场景中的地形、墙壁、天花板等。虽然它们都是由多个点和线构成的,但是它们之间有着一些重要的区别。 平面是由三个或更多个点组成的,这些点通常位于同一平面上。在Unity中,可以使用Mesh类来创建平面,并指

    2024年02月03日
    浏览(30)
  • 等参元:平面四节点四边形等参元的刚度矩阵的计算

    如图为一个平面3节点四边形等参元, 采用 4 点高斯积分计算该单元刚度矩阵。 ------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------ [1有限元基础教程-曾攀 

    2024年02月11日
    浏览(36)
  • 放缩不等式推导

    放缩不等式推导 1 )   a x x + 1 ( 1 a ≤ e , x 0 ; a ≥ e , x 0 ) ; 1) a^xx+1left(1aleq e,x0;ageq e,x0right); 1 )   a x x + 1 ( 1 a ≤ e , x 0 ; a ≥ e , x 0 ) ; p r o o f : proof: p roo f : f 01 ( x ) = a x − ( x + 1 ) ⇒ f 01 ′ ( x ) = a x ln ⁡ a − 1 f_{01}left(xright)=a^{x}-left(x+1right)Rightarrow f_{01}^{\\\'}left(xright) =

    2023年04月22日
    浏览(31)
  • 各种数学不等式

    以丹麦技术大学数学家约翰·延森(John Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。 是数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。 是柯西不等式的推广. 赫尔德不等式是数学分析的一条不等式,取名自奥图·赫尔德(Otto Hölder) 是德国

    2024年02月14日
    浏览(32)
  • Hoeffing不等式

    设 X 1 , X 2 , . . . , X N X_1,X_2,...,X_N X 1 ​ , X 2 ​ , ... , X N ​ 是独立随机变量,且 X i ∈ [ a i , b i ] , i = 1 , 2 , . . . , N ; S N = ∑ i = 1 N X i X_iin[a_i,b_i],i=1,2,...,N;S_N=sum_{i=1}^NX_i X i ​ ∈ [ a i ​ , b i ​ ] , i = 1 , 2 , ... , N ; S N ​ = ∑ i = 1 N ​ X i ​ ,则对任意t0,以下不等式成立:

    2024年02月07日
    浏览(30)
  • 不等式证明(三)

    设 p , q p ,q p , q 是大于1的常数,并且 1 p + 1 q = 1 frac{1}{p}+frac{1}{q}=1 p 1 ​ + q 1 ​ = 1 .证明:对于任意的 x 0 x0 x 0 ,有 1 p x p + 1 q ≥ x frac{1}{p}x^p+frac{1}{q}geq x p 1 ​ x p + q 1 ​ ≥ x . 证明 : 设 f ( x ) = 1 p x p + 1 q − x (1) f(x)=frac{1}{p}x^p+frac{1}{q}- xtag{1} f ( x ) = p 1 ​ x p + q 1 ​

    2024年01月21日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包