卷积神经网络(CNN)的整体框架及细节(详细简单)

这篇具有很好参考价值的文章主要介绍了卷积神经网络(CNN)的整体框架及细节(详细简单)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一:引言

我们传统的神经网络和卷积神经网络有什么区别?
下图所示,左图就是我们传统的神经网络(NN)(想了解NN的小伙伴可以先划到最后的参考文章部分),右图就是卷积神经网络(Convolutional Neural Network)(CNN),我们在这张图中可以明显地看出,左图看上去像二维的,右图好像是一个三维的图,举个例子,比如在传统神经网络输入的一张图有784个像素点,所以输入层就有784个神经元,但在我们的CNN中输入的就是原始的图像28*28*1(是三维的),它是一个三维的矩阵。我们可以看到右图中又定义三维名称‘height*width*depth’简称‘h*w*d’,接下来我们就围绕着卷积层和深度到底怎么变换展开。

卷积神经网络(CNN)的整体框架及细节(详细简单)

 文章来源地址https://www.toymoban.com/news/detail-409982.html

二:大体介绍CNN:

如下图所示就是CNN的整体架构,和我们讲述NN的文章相同,这次也是从整体架构入手,帮助大家了解CNN,总共有四个部分:输入层 ,卷积层 ,池化层 ,全连接层 。

卷积神经网络(CNN)的整体框架及细节(详细简单)

 

三:详细介绍CNN:

(1):输入层:

输入层就是和上文的例子相同,如图中的最左边的图片假设就是我们需要输入的,假设是‘28*28*3’,分别对应‘h*w*d’,其中对于图片输入来说通常是以RGB三通道的形式输入,所以d通常是3,如下图中的第二张图片就是后面三个通道图片相叠加而来

卷积神经网络(CNN)的整体框架及细节(详细简单)

 

(2):卷积层(核心):

卷积层是如何工作的呢?我们先给定一个简单的例子,如下图所示:

卷积神经网络(CNN)的整体框架及细节(详细简单)

 

假设我们输入的是5*5*1的图像,中间的那个3*3*1是我们定义的一个卷积核(简单来说可以看做一个矩阵形式运算器),通过原始输入图像和卷积核做运算可以得到绿色部分的结果,怎么样的运算呢?实际很简单就是我们看左图中深色部分,处于中间的数字是图像的像素,处于右下角的数字是我们卷积核的数字,只要对应相乘再相加就可以得到结果。例如图中‘3*0+1*1+2*2+2*2+0*2+0*0+2*0+0*1+0*2=9’

那如果我们的d大于一的时候又是如何计算的?

如下动图:

卷积神经网络(CNN)的整体框架及细节(详细简单)

图中最左边的三个输入矩阵就是我们的相当于输入d=3时有三个通道图,每个通道图都有一个属于自己通道的卷积核,我们可以看到输出(output)的只有两个特征图意味着我们设置的输出的d=2,有几个输出通道就有几层卷积核(比如图中就有FilterW0和FilterW1),这意味着我们的卷积核数量就是输入d的个数乘以输出d的个数(图中就是2*3=6个),其中每一层通道图的计算与上文中提到的一层计算相同,再把每一个通道输出的输出再加起来就是绿色的输出数字啦!。

(3):池化层:

池化层部分就比较简单了如下图所示:

卷积神经网络(CNN)的整体框架及细节(详细简单)

 如图中就是一个max-pooling(最大池化)的一个操作,就是把选中的区域中的最大值给挑出来,比如粉红色区域的‘1,1,5,6’四个数字最大值就是6,还有一种比较常见的是mean-pooling(平均池化)就是把区域内的数字加起来做个平均值,比如蓝色区域就是(1+0+3+4)/4=2。

(4):全连接层(FC)

全连接层的理解就是相当于在最后面加一层或多层传统神经网络(NN)层,我们在连接全连接层前,需要把我们的CNN的三维矩阵进行展平成二维,比如说从池化层出来的是‘5*5*3’的图像,在输入到全连接层展平成1*75以满足全连接层的输入模式。

四:最后呈现

如下图:

卷积神经网络(CNN)的整体框架及细节(详细简单)

五:参考文章:

1:CNN笔记:通俗理解卷积神经网络_v_JULY_v的博客-CSDN博客_卷积神经网络通俗理解

2:CNN部分不愧是计算机博士唐宇迪居然半天教会了我大学4年没学会的深度学习经典算法解析入门到实战课程,看不懂你打我!!!_哔哩哔哩_bilibili

3:传统神经网络:

神经网络整体架构及细节(详细简单)_小林学编程的博客-CSDN博客

 

到了这里,关于卷积神经网络(CNN)的整体框架及细节(详细简单)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 理解卷积神经网络(CNN)

    卷积神经网络(CNN)是一种专为处理具有类似网格结构的数据(如图像)而设计的深度学习架构。自从在图像处理和计算机视觉领域取得突破性成就以来,CNN已成为这些领域的核心技术之一。 CNN的起源与发展 CNN的概念最初是受到生物视觉感知机制的启发而提出的。早期的研

    2024年03月10日
    浏览(67)
  • 【人工智能】— 深度神经网络、卷积神经网络(CNN)、多卷积核、全连接、池化

    Pre-training + Fine-tuning Pre-training(预训练) : 监督逐层训练是多隐层网络训练的有效手段, 每次训练一层隐层结点, 训练时将上一层隐层结点的输出作为输入, 而本层隐结点的输出作为下一层隐结点的输入, 这称为”预训练”. Fine-tuning(微调) : 在预训练全部完成后, 再对整个网络进行

    2024年02月10日
    浏览(48)
  • 深度学习——CNN卷积神经网络

    卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习中常用于处理具有网格结构数据的神经网络模型。它在计算机视觉领域广泛应用于图像分类、目标检测、图像生成等任务。 CNN 的核心思想是通过利用局部感知和参数共享来捕捉输入数据的空间结构信息。相比于传统

    2024年02月15日
    浏览(48)
  • 深度学习|CNN卷积神经网络

    在CNN没有出现前,图像对人工智能来说非常难处理。 主要原因: 图像要处理的数据量太大了。图像由像素组成,每个像素又由不同颜色组成,一张1000×1000彩色RGB图像需要的参数是1000×1000×3,需要三百万参数左右,普通神经网络会全用全连接方法来学习整幅图像上的特征,处

    2024年02月11日
    浏览(52)
  • 十、CNN卷积神经网络实战

    输入样本通道数4、期待输出样本通道数2、卷积核大小3×3 具体卷积层的构建可参考博文:八、卷积层 设定卷积层 torch.nn.Conv2d(in_channels=in_channel,out_channels=out_channel,kernel_size=kernel_size,padding=1,stride=1) 必要参数:输入样本通道数 in_channels 、输出样本通道数 out_channels 、卷积核大小

    2023年04月09日
    浏览(52)
  • 深度学习之卷积神经网络(CNN)

          大家好,我是带我去滑雪!       卷积神经网络(Convolutional Neural Network,CNN)是一种基于深度学习的前馈神经网络,主要用于 图像 和 视频识别 、 分类 、 分割 和 标注 等计算机视觉任务。它主要由 卷积层 、 池化层 、 全连接层 和 激活函数层 等组成。其中,卷积

    2024年02月05日
    浏览(53)
  • CNN卷积神经网络基础知识

    1.1 卷积核大小的选择 1. 选择奇数卷积核 ①. 保护位置信息,奇数卷积核的中心点位置在中心,有利于定位任务。 ②. padding时左右对称。 2. 在感受野相同的情况下优先选择较小的卷积核以减少计算量 ①. 两个3x3卷积核的感受野与一个5x5卷积核的感受野相同 ②. 两个3x3卷积核的

    2024年02月04日
    浏览(56)
  • 深度学习03-卷积神经网络(CNN)

    CNN,即卷积神经网络(Convolutional Neural Network),是一种常用于图像和视频处理的深度学习模型。与传统神经网络相比,CNN 有着更好的处理图像和序列数据的能力,因为它能够自动学习图像中的特征,并提取出最有用的信息。 CNN 的一个核心特点是卷积操作,它可以在图像上进

    2024年02月05日
    浏览(71)
  • 深度学习1.卷积神经网络-CNN

    目录 卷积神经网络 – CNN CNN 解决了什么问题? 需要处理的数据量太大 保留图像特征 人类的视觉原理 卷积神经网络-CNN 的基本原理 卷积——提取特征 池化层(下采样)——数据降维,避免过拟合 全连接层——输出结果 CNN 有哪些实际应用? 总结 百度百科+维基百科 卷积层

    2024年02月11日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包