Hive Lateral View + explode 详解

这篇具有很好参考价值的文章主要介绍了Hive Lateral View + explode 详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

hive中的函数分为3类,UDF函数、UDAF函数、UDTF函数

  • UDF:一进一出
  • UDAF:聚集函数,多进一出,类似于:count/max/min
  • UDTF:一进多出,如explore()、posexplode(),UDTF函数的时候只允许一个字段

百度explode()时,经常会出现lateral view + explode相关的文章,很少单独写explode()。分别了解ecplode() 与lateral view的各自作用很重要,不然过程都不知道实现的,换个UDTF函数就不会使用了。

一、UDTF函数 explode() 讲解

UDTF函数作用都是输入一行数据,将该行数据拆分、并返回多行数据。不同UDTF函数只是拆分的原理不同、作用的数据格式不同而已。
这里详细讲解explode()用法,学会这一个其他的UDTF函数也会使用。

explode()将一行数据转换成列数据,可以用于arraymap类型的数据
1)explode()用于array的语法如下:

select explode(arraycol) as newcol from tablename;

#arraycol:arrary数据类型字段。
#tablename:表名

2)explode()用于map的语法如下:

select explode(mapcol) as (keyname,valuename) from tablename;
#tablename:表名
#mapcol:map类型的字段
#keyname:表示key转换成的列名称,用于代表key转换之后的列名。
#valuename:表示value转换成的列名称,用于代表value转换之后的列名称。

explode()用于map类型的数据时,由于map是kay-value结构的,所以它在转换的时候会转换成两列,一列是kay转换而成的,一列是value转换而成的。

3)以上为explode()函数的用法,此函数存在局限性:

  • 其一:不能关联原有的表中的其他字段。
  • 其二:不能与group by、cluster by、distribute by、sort by联用。
  • 其三:不能进行UDTF嵌套。
  • 其四:不允许选择其他表达式。

二、百度explode(),总会出现lateral view,它们各自的作用是什么?

第一部分对explode()函数做了简单的讲解,知道它作用的数据格式为array和map ,也知道了如何单独使用explode,可能脑袋还是有点懵,下面将结合案例一起学习。

UDTF函数(如:explode)只能只允许对拆分字段进行访问,即select时只能出现explode作用的字段,不能在选择表中其它的字段,否则会报错。
但是实际中需求中经常要拆某个字段,然后一起与别的字段一起取。这时就要使用lateral view。

lateral view为侧视图,其实就是用来和像类似explode这种UDTF函数联用的,lateral view会将UDTF生成的结果放到一个虚拟表中,然后这个虚拟表会和输入行进行join来达到连接UDTF外的select字段的目的。

不加lateral view的UDTF函数只能提取单个字段拆分,并不能塞回原来数据表中。加上lateral view就可以将拆分的单个字段数据与原始表数据关联上。在使用lateral view的时候需要指定视图别名生成新列别名。

1、udtf + lateral view 格式一

lateral view udtf(expression) tableAlias as columnAlias (,columnAlias)*
  • lateral view在UDTF前使用,表示连接UDTF所分裂的字段。
  • UDTF(expression):使用的UDTF函数,例如explode()。
  • tableAlias:表示UDTF函数转换的虚拟表的名称。
  • columnAlias:表示虚拟表的虚拟字段名称,如果分裂之后有一个列,则写一个即可;如果分裂之后有多个列,按照列的顺序在括号中声明所有虚拟列名,以逗号隔开。

2、udtf + lateral view 格式二

from basetable (lateral view)*
  • 在from子句中使用,一般和格式一搭配使用,这个格式只是说明了lateral view的使用位置。
  • from子句后面也可以跟多个lateral view语句,使用空格间隔就可以了。
eg:
SELECT myCol1, myCol2 FROM baseTable
LATERAL VIEW explode(col1) myTable1 AS myCol1
LATERAL VIEW explode(col2) myTable2 AS myCol2;

#col1为表baseTable字段中的map或者array类型
#col2为表baseTable字段中的map或者array类型

3、udtf + lateral view 格式三

from basetable (lateral view outer)*
from basetable (lateral view outer)*

它比格式二只是多了一个outer,这个outer的作用是在UDTF转换列的时候将其中的也给展示出来UDTF默认忽略输出空的,加上outer之后,会将空也输出,显示为NULL。这个功能是在Hive0.12是开始支持的。

eg:
select name,key,value from student_score lateral view outer explode(score) scntable as key,value;

-------------可借助下面逻辑理解-------------
 

# 查看表数据
hive> select * from udtf_test;
OK
jim5    ["james5","datacloase"]
jim4    ["james4","datacloase"]
jim3    ["james3","datacloase"]
jim2    ["james2","datacloase"]
Time taken: 0.084 seconds, Fetched: 4 row(s)

# 1)hive只允许对其拆分字段进行访问
hive> select explode(subordinates) from udtf_test;
OK
james5
datacloase
james4
datacloase
james3
datacloase
james2
datacloase
Time taken: 0.075 seconds, Fetched: 8 row(s)

#2)同时select 查询 explode作用字段及其它字段时,报错
hive> select explode(subordinates),name from udtf_test;
FAILED: SemanticException 1:29 Only a single expression in the SELECT clause is supported with UDTF's. Error encountered near token 'name'

#3)借助lateral view,同时查询explode作用字段及其它字段
hive> select name,subordinate from udtf_test
    > lateral view explode(subordinates)sub as subordinate;
OK
jim5    james5
jim5    datacloase
jim4    james4
jim4    datacloase
jim3    james3
jim3    datacloase
jim2    james2
jim2    datacloase
Time taken: 0.06 seconds, Fetched: 8 row(s)

三、explode、posexplode与lateral view 3套案例练习

拓展:
        explode与lateral view在关系型数据库中本身是不该出现的,因为他的出现本身就是在操作不满足第一范式的数据(每个属性都不可再分),本身已经违背了数据库的设计原理(不论是业务系统还是数据仓库系统)
        不过大数据技术普及后,很多类似pv,uv的数据,在业务系统中是存贮在非关系型数据库中,用json存储的概率比较大,直接导入hive基础的数仓系统中,就需要经过ETL过程解析这类数据,explode与lateral view在这种场景下大显身手。

1、找出相同数字的号码超过5位的手机号

1) 使用数据

jimmhe  18191512076
xiaosong    18392988059
jingxianghua    18118818818
donghualing 17191919999

2) 创建表

CREATE TABLE udtf_test1(
  name string, 
  phonenumber string)
ROW FORMAT DELIMITED 
  FIELDS TERMINATED BY '\t'

3) 加载数据

load data local inpath '/home/atguigu/data/test_20211215.txt' into table udtf_test1;

4) 查看加载表数据

hive> select * from udtf_test1;
OK
jimmhe  18191512076
xiaosong    18392988059
jingxianghua    18118818818
donghualing 17191919999
Time taken: 0.076 seconds, Fetched: 4 row(s)

5) 解题分析思路
split将电话号码,拆分成数组,在用explode炸裂:

select name,phonenumber
from(
select 
    name
    ,phonenumber
    ,phone_num
from udtf_test1
lateral view explode(split(phonenumber,'')) view_number as phone_num)aa
group by name,phonenumber,phone_num
having count(1)>=5

2、求一下每个学生成绩最好的学科及分数、最差的学科及分数、平均分数

有一张hive表,分别是学生姓名name(string),学生成绩score(map<string,string>),成绩列中key是学科名称,value是对应学科分数,请用一个hql求一下每个学生成绩最好的学科及分数、最差的学科及分数
1)表数据如下:

zhangsan|Chinese:80,Math:60,English:90
lisi|Chinese:90,Math:80,English:70
wangwu|Chinese:88,Math:90,English:96
maliu|Chinese:99,Math:65,English:60

2)创建表:

create table stu_score_test(name string,score map<String,string>)
row format delimited
fields terminated by '|'
collection items terminated by ','
map keys terminated by ':';

3)导入数据:

load data local inpath '/home/atguigu/data/test_20211216' into table stu_score_test;

4)查看导入后表数据

hive> select * from stu_score_test;
OK
zhangsan    {"Chinese":"80","Math":"60","English":"90"}
lisi    {"Chinese":"90","Math":"80","English":"70"}
wangwu  {"Chinese":"88","Math":"90","English":"96"}
maliu   {"Chinese":"99","Math":"65","English":"60"}
Time taken: 0.164 seconds, Fetched: 4 row(s)

5)解题思路
explode拆分map数据类型:

select 
    name,course,csorce
from(
    select 
        name
        ,course
        ,csorce 
        ,rank()over(partition by name order by csorce) last_rn
        ,rank()over(partition by name order by csorce desc) best_rn
    from stu_score_test
    lateral view  explode(score)  score_view as course,csorce
    )aa
where last_rn=1 or best_rn=1

Hive Lateral View + explode 详解

3、计算酒店每天有多少个房间的入住---重点

1)需求如下

Hive Lateral View + explode 详解

2)原始数据

7,2004,2021-03-05,2021-03-07
23,2010,2021-03-05,2021-03-06
7,1003,2021-03-07,2021-03-08
8,2014,2021-03-07,2021-03-08
14,3001,2021-03-07,2021-03-10
18,3002,2021-03-08,2021-03-10
23,3020,2021-03-08,2021-03-09
25,2006,2021-03-09,2021-03-12

3) 建表

create table temp_hotal_live(
user_id  varchar(50),
room_code  varchar(50),
Check_date varchar(50),
leave_date varchar(50)
)
ROW FORMAT DELIMITED 
  FIELDS TERMINATED BY ','
;

4) 分析思路
用posplode炸裂,补充完整时间:

SELECT 
start_dd,end_dd,count(1)
from
(SELECT
    user_id,  --用户id
    check_date,  --入店时间
    leave_date,  --离店时间
    date_add( check_date, pos ) start_dd,
    date_add( check_date, pos+1 ) end_dd
    FROM
    temp_hotal_live
    lateral VIEW 
    posexplode ( split ( REPEAT('A,',datediff( leave_date, check_date )) , ',' ) ) t AS pos, val
)
group BY start_dd,end_dd
  • datediff,计算住了多少天,两个时间之间的差值;
  • REPEAT(),把字符串复制多少次,把'A,'本题是把A,复制;
  • split,把字符串按分隔符分割为数组;
  • posexplode :炸裂,并排序; 可以行转列,并把索引取出。

Hive Lateral View + explode 详解

Hive Lateral View + explode 详解文章来源地址https://www.toymoban.com/news/detail-410500.html

到了这里,关于Hive Lateral View + explode 详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Hive SQL 中ARRAY或MAP类型数据处理:lateral view explode()/posexplode()——行转列函数

    前言:在对表数据进行批量处理过程中,常常碰上某个字段是一个array或者map形式的字段,一列数据的该字段信息同时存在多个值,当我们需要取出该数组中的每一个值实现一一对应关系的时候,可以考虑使用lateral view explode()/posexplode() 进行处理。 一、提要:explode()本身是

    2024年02月04日
    浏览(48)
  • HIVE SQL通过Lateral View + explode实现列转行

    原表: a b Andy 碟中谍,谍影重重,007 MOMO 小鞋子,朋友啊你的家在哪里 David ‘’ Lily NULL 实现效果 a b Andy 碟中谍 Andy 谍影重重 Andy 007 MOMO 小鞋子 MOMO 朋友啊你的家在哪里 David ‘’ 实现代码: 注: explode函数:处理map结构的字段,将数组转换成多行,所以此处使用了split函数将

    2024年02月12日
    浏览(36)
  • Hive中的explode函数、posexplode函数与later view函数

      在离线数仓处理通过HQL业务数据时,经常会遇到行转列或者列转行之类的操作,就像concat_ws之类的函数被广泛使用,今天这个也是经常要使用的拓展方法。 2.1 函数语法 2.2 函数说明 explode 函数是UDTF 函数,将hive一列中复杂的array或者map结构拆分成多行。 Explode函数是不允

    2024年04月09日
    浏览(38)
  • hive lateral view 实践记录(Array和Map数据类型)

    目录 一、Array 1.建表并插入数据  2.lateral view explode 二、Map 1、建表并插入数据 2、lateral view explode() 3、查询数据 正确插入数据: 原数据 结果:  --------最开始错误的插入数据法-------  原数据  step1: step2: 备注: 比原表数据少了 双引号 综上,以上的插入数据是不对的!!

    2024年02月11日
    浏览(41)
  • Hive SQL——explode拆分函数&多行(列)合并为一行(列)&reflect函数

    cd /data/import/ sudo vi test_explode_map_array.txt 添加以下文件内容 小明    产品1,产品2,产品3    性别:男,年龄:24 小花    产品4,产品5,产品6    性别:女,年龄:22  map_key map_value 年龄 24 性别 男 年龄 22 性别 女 prod_arr_new 产品1 产品2 产品3 产品4 产品5 产品6 name prod_arr_new 小明 产品1

    2024年02月15日
    浏览(51)
  • MySQL实现数据炸裂拆分(类似Hive的explode函数的拆分数组功能)

    背景描述 ​ 在Hive中,\\\"explode\\\"函数用于将数组类型的列拆分为多行,以便对数组中的每个元素进行处理。然而,在MySQL中,并没有直接的类似功能。但是,我们可以使用一些技巧来模拟这个功能,实现在MySQL中拆分数组并进行查询的操作。本文将介绍如何在MySQL中实现类似Hiv

    2024年02月11日
    浏览(42)
  • 详解Pytorch中的view函数

    一、函数简介 Pytorch中的view函数主要用于 Tensor维度的重构 ,即返回一个 有相同数据但不同维度的Tensor 。 根据上面的描述可知,view函数的操作对象应该是Tensor类型。如果不是Tensor类型,可以通过tensor = torch.tensor(data)来转换。 二、实例讲解 ▶view(参数a,参数b,…),其中,总的

    2024年02月16日
    浏览(38)
  • 大数据Hive篇:explode 和 posexplode

    一. explode单独使用。 1.1. 用于array类型的数据 table_name 表名 array_col 为数组类型的字段 new_col array_col被explode之后对应的列 1.2. 用于map类型的数据 由于map是kay-value结构的,所以它在转换的时候会转换成两列,一列是kay转换而成的,一列是value转换而成的。 table_name 表名 map_col 为

    2024年02月13日
    浏览(36)
  • HiveSQL题——炸裂函数(explode/posexplode)

    目录 一、炸裂函数的知识点 1.1 炸裂函数  explode  posexplode 1.2 lateral view 侧写视图 二、实际案例 2.1 每个学生及其成绩 0 问题描述 1 数据准备 2 数据分析 3 小结 2.2 日期交叉问题 0 问题描述 1 数据准备 2 数据分析 3 小结 2.3 用户消费金额 0 问题描述 1 数据准备 2 数据分析 3 小

    2024年03月15日
    浏览(41)
  • Pandas中explode()函数的应用与实战

    目录 引言 explode() 函数基础 实际案例分析 进阶用法和注意事项 与其他函数的结合使用 结论 在数据处理和分析的过程中,我们经常会遇到具有嵌套结构的数据集,如列表、字典等形式的列。Pandas库作为Python中强大的数据处理工具,提供了丰富的函数来处理这类数据。其中,

    2024年04月28日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包