滑模控制理论(SMC)

这篇具有很好参考价值的文章主要介绍了滑模控制理论(SMC)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

滑模控制理论(Sliding Mode Control,SMC)

滑膜控制理论是一种建立在现代控制理论基础上的控制理论,其核心为李雅普诺夫函数,滑膜控制的核心是建立一个滑模面,将被控系统拉倒滑模面上来,使系统沿着滑模面运动,滑膜控制的优势在于无视外部扰动和不确定性参数,采取一种比较暴力的方式来达到控制目的,但是这种暴力也带来了一些问题,就是正负信号的高频切换,一般的硬件是无法进行信号的高频切换的,所以需要一些其他的方式避免这个问题,还有就是型号的高频切换会导致输出的信号出现震荡,导致系统在所选取的滑模面之间来回震荡,这种震荡是无法消除的,这也是滑膜控制的一个问题。

优点

滑动模态可以设计

对扰动不敏感

缺点

硬件无法适应高频的信号切换

信号高频切换带来的输出信号震荡

系统建模

我们可以建立一个简单的二阶系统的状态方程
x ˙ 1 = x 2 x ˙ 2 = u \begin{align} \dot x_1 &= x_2 \nonumber \\ \dot x_2 &= u \nonumber \\ \end{align} x˙1x˙2=x2=u
我们的控制目标很明确,就是希望 x 1 = 0 , x 2 = 0 x_1 = 0,x_2=0 x1=0,x2=0

设计滑模面

s = c x 1 + x 2 s=cx_1+x_2 s=cx1+x2

这里有个问题就是,滑模面是个什么东西,为什么要设计成这个样子,为什么不是别的样子,其实这个涉及一个问题就是我们控制的目标是什么,是 x 1 = 0 , x 2 = 0 x_1 = 0,x_2=0 x1=0,x2=0,那如果 s = 0 s=0 s=0
{ c x 1 + x 2 = 0 x ˙ 1 = x 2 ⇒ c x 1 + x ˙ 1 = 0 ⇒ { x 1 = x 1 ( 0 ) e − c t x 2 = − c x 1 ( 0 ) e − c t \begin{equation} \begin{cases} cx_1 + x_2 = 0 \\ \dot x_1 = x_2 \\ \end{cases} \Rightarrow cx_1+\dot x_1 = 0 \Rightarrow \begin{cases} x_1 = x_1(0)e^{-ct} \\ x_2 = -cx_1(0)e^{-ct} \\ \end{cases} \nonumber \end{equation} {cx1+x2=0x˙1=x2cx1+x˙1=0{x1=x1(0)ectx2=cx1(0)ect
可以看出状态量最终都会趋于0,而且是指数级的趋于0。 c c c 越大,速度也就越快。所以如果满足 s = c x 1 + c 2 = 0 s=cx_1+c_2=0 s=cx1+c2=0,那么系统的状态将沿着滑模面趋于零,( s = 0 s=0 s=0称之为滑模面)

设计趋近律

上面说,如果 s = 0 s=0 s=0 状态变量最终会趋于0,可以如何保证 s = 0 s=0 s=0 呢,这就是控制率 u u u 需要保证的内容了
s ˙ = c x ˙ 1 + x ˙ 2 = c x 2 + u \dot s = c \dot x_1 + \dot x_2 = cx_2+u s˙=cx˙1+x˙2=cx2+u
趋近律就是指 s ˙ \dot s s˙ ,趋近律的一般有以下几种设计
{ s ˙ = − ε s g n ( s ) , ε > 0 s ˙ = − ε s g n ( s ) − k s , ε > 0 , k > 0 s ˙ = − k ∣ s ∣ α s g n ( s ) , 0 < α < 1 \begin {cases} \dot s = - \varepsilon sgn(s), \varepsilon > 0 \\ \dot s = - \varepsilon sgn(s)-ks, \varepsilon > 0 , k>0\\ \dot s = - k|s|^{\alpha}sgn(s), 0 < \alpha < 1 \end{cases} s˙=εsgn(s),ε>0s˙=εsgn(s)ks,ε>0,k>0s˙=ksαsgn(s),0<α<1

s g n ( s ) = { 1 , s > 0 − 1 , s < 0 sgn(s) = \begin{cases} 1,s>0 \\ -1,s<0 \\ \end{cases} sgn(s)={1,s>01,s<0

根据以上的趋近律,我们就可以获得控制量 u u u 了(选取第一种控制率)。
u = − c x 2 − ε s g n ( s ) u = -cx_2-\varepsilon sgn(s) u=cx2εsgn(s)
我们对系统施加控制量 u u u 即可保证系统最终稳定在原点。

证明有效性

在控制原理中用李雅普诺夫函数来判断系统的稳定性,对于系统状态方程 s ˙ = c x 2 + u \dot s = cx_2+u s˙=cx2+u ,我们此时的目标已经是希望把系统拉倒滑模面附近了,控制目标是 s s s ,对于 s s s 如果存在一个连续函数 V V V 满足下面两个式子,那么系统将在平衡点 s = 0 s=0 s=0 处稳定,即 lim ⁡ t → ∞ V = 0 {\lim\limits_{t \to \infty}V = 0} tlimV=0
lim ⁡ ∣ s ∣ → ∞ V = ∞ {\lim\limits_{|s| \to \infty}V = \infty} slimV=

V ˙ < 0   f o r   s ≠ 0 \dot V < 0 \ for \ s \ne 0 V˙<0 for s=0

我们证明的方法就是令 V = 1 2 s 2 V= \frac {1} {2} s ^ 2 V=21s2 ,很明显我们满足第一个条件,我们对 V V V 进行求导,
V ˙ = s s ˙ = − s ε s g n ( s ) = − ε ∣ s ∣ < 0 \dot V = s \dot s = -s \varepsilon sgn(s) = - \varepsilon|s| < 0 V˙=ss˙=sεsgn(s)=εs<0
也是满足第二个条件的,所以最终系统会稳定在滑膜面附近,这也就意味着两个变量也会稳定在滑模面期望他们稳定在的位置,即零点。

无限时间问题

上面的分析看似无懈可击,实际上是没什么用的,因为我们最终得到的结论是,在时间趋于无穷时,系统的状态必将趋于0,这有用吗,并没有,因为无限时间这太恐怖了,人死了系统都没稳定的话这没什么意义,所以我们必须要求他是有限时间可达的,所以我们修改一个李雅普诺夫的第二个条件
V ˙ ≤ − α V 1 2 \dot V \le - \alpha V ^ {\frac {1} {2}} V˙αV21
对于改进后的这个条件可以分离变量再积分
d V d t ≤ − α V 1 2 V − 1 2 d V ≤ − α d t ∫ 0 t V − 1 2 d V ≤ ∫ 0 t − α d t V 1 2 ( t ) − V 1 2 ( 0 ) ≤ − 1 2 α t V 1 2 ( t ) ≤ − 1 2 α t + V 1 2 ( 0 ) \begin {align} \frac {\text d V} {\text d t} &\le - \alpha V ^ {\frac {1} {2}} \nonumber\\ V ^ {- \frac {1} {2}} \text d V &\le - \alpha \text d t \nonumber\\ \int^{t}_{0} V ^ {- \frac {1} {2}} \text d V &\le \int^{t}_{0} - \alpha \text d t \nonumber\\ V ^ {\frac {1} {2}} (t) - V ^ {\frac {1} {2}} (0) &\le - \frac {1} {2} \alpha t \nonumber\\ V ^ {\frac {1} {2}} (t) &\le - \frac {1} {2} \alpha t + V ^ {\frac {1} {2}} (0) \nonumber \\ \end {align} dtdVV21dV0tV21dVV21(t)V21(0)V21(t)αV21αdt0tαdt21αt21αt+V21(0)
根据上面的等式可以看出, V V V 将在有限时间达到稳定,稳定的最终时间为
t r ≤ 2 V 1 2 ( 0 ) α t_r \le \frac {2V^ \frac {1} {2} (0)} {\alpha} trα2V21(0)
因为李雅普诺夫条件的改变,控制器 u u u 也需要作出相应改变
{ V ˙ = s s ˙ = − s ε s g n ( s ) = − ε ∣ s ∣ V = 1 2 s 2 V ˙ ≤ − α V 1 2 ⇒ V ˙ = − ε ∣ s ∣ ≤ − α s 2 ⇒ ε ≥ α 2 \begin{cases} \dot V = s \dot s = -s \varepsilon sgn(s) = - \varepsilon|s|\\ V = \frac {1} {2} s ^ 2 \\ \dot V \le - \alpha V ^ {\frac{1} {2}} \end{cases} \Rightarrow \dot V = - \varepsilon|s| \le -\alpha \frac{s}{\sqrt {2}} \Rightarrow \varepsilon \ge \frac {\alpha} {\sqrt{2}} V˙=ss˙=sεsgn(s)=εsV=21s2V˙αV21V˙=εsα2 sε2 α
也就是给之前随意指定的 ε \varepsilon ε 增加了一个控制条件

干扰问题

上面的讨论其实还基于一个假设,没有干扰,没有干扰的控制是非常好做的,也是没什么实际意义的,这里我们将干扰项加入状态方程,之前我们讲到了滑膜方法对干扰是不敏感的,这里我们将从原理上解释为什么滑膜方法对干扰不敏感。

加入干扰后的状态方程
x ˙ 1 = x 2 x ˙ 2 = u + d \begin{align} \dot x_1 &= x_2 \nonumber\\ \dot x_2 &= u + d \nonumber\\ \end{align} x˙1x˙2=x2=u+d
这对我们设计滑膜面没有什么影响,我们的滑膜面如下
s = c x 1 + x 2 s = cx_1+x_2 s=cx1+x2
我们的趋近律设计也不变
s ˙ = − ε s g n ( s ) \dot s = - \varepsilon sgn(s) s˙=εsgn(s)
我们的控制量 u u u 也不变
u = − ε s g n ( s ) − c x 2 u = - \varepsilon sgn(s) - cx_2 u=εsgn(s)cx2

s ˙ = c x ˙ 1 + x ˙ 2 = c x 2 + u + d \begin{align} \dot s &= c \dot x_1 + \dot x_2 \nonumber\\ &=cx_2 + u + d \nonumber\\ \end{align} s˙=cx˙1+x˙2=cx2+u+d

分析稳定性我们依旧使用李雅普诺夫函数
V = 1 2 s 2 V ˙ = s s ˙ = s ( c x 2 + u + d ) = s ( − ε s g n ( s ) + d ) ≤ − ε ∣ s ∣ + s d ≤ − ε ∣ s ∣ + s L ≤ ∣ s ∣ ( ε − L ) \begin{align} V &= \frac {1} {2} s ^ 2 \nonumber\\ \dot V &= s \dot s \nonumber\\ &= s (cx_2 + u + d) \nonumber\\ &= s (- \varepsilon sgn(s) + d) \nonumber\\ & \le -\varepsilon|s| + sd \nonumber\\ & \le -\varepsilon|s| + sL \nonumber\\ & \le |s|(\varepsilon - L) \nonumber\\ \end{align} VV˙=21s2=ss˙=s(cx2+u+d)=s(εsgn(s)+d)εs+sdεs+sLs(εL)
其中 L L L 为干扰 d d d 的上界
V ˙ ≤ − α V 1 2 − ε ∣ s ∣ + s L ≤ − α s 2 − ε ∣ s ∣ ≤ − α s 2 − s L ε ∣ s ∣ ≥ α s 2 + s L ε ≥ s g n ( s ) ( α 2 + L ) ε ≥ ( α 2 + L ) \begin{align} \dot V &\le - \alpha V ^ {\frac{1} {2}} \nonumber\\ -\varepsilon|s| + sL & \le -\alpha \frac{s}{\sqrt {2}} \nonumber\\ -\varepsilon|s| & \le -\alpha \frac{s}{\sqrt {2}} - sL \nonumber\\ \varepsilon|s| & \ge \alpha \frac{s}{\sqrt {2}} + sL \nonumber\\ \varepsilon & \ge sgn(s)(\frac{\alpha}{\sqrt {2}} + L) \nonumber\\ \varepsilon & \ge (\frac{\alpha}{\sqrt {2}} + L) \nonumber\\ \end{align} V˙εs+sLεsεsεεαV21α2 sα2 ssLα2 s+sLsgn(s)(2 α+L)(2 α+L)
所以我们直接证明了,当我们的干扰有上界的情况下,我们的滑膜参数 $\varepsilon $ 只需要满足上述条件就可以以指数级的收敛速度收敛到滑膜面附近。

三阶系统滑膜设计方法示例

三阶系统的模型如下
x ˙ 1 = x 2 x ˙ 2 = x 3 x ˙ 3 = f ( x ) + g ( x ) u \begin {align} \dot x_1 &= x_2 \nonumber\\ \dot x_2 &= x_3 \nonumber\\ \dot x_3 &= f(x) + g(x)u \nonumber\\ \end {align} x˙1x˙2x˙3=x2=x3=f(x)+g(x)u
假设,我们期望的 x 1 x_1 x1 的目标是 x 1 d x_{1d} x1d ,注意,这里和前文不同,这里的控制目标不在是0了
e 1 = x 1 − x 1 d e 2 = e ˙ 1 = x ˙ 1 − x ˙ 1 d = x 2 − x ˙ 1 d e 3 = e ˙ 2 = x ¨ 1 − x ¨ 1 d = x 3 − x ¨ 1 d \begin{align} e_1 &= x_1 - x_{1d} \nonumber\\ e_2 &= \dot e_1 = \dot x_1 - \dot x_{1d} = x_2 - \dot x_{1d} \nonumber\\ e_3 &= \dot e_2 = \ddot x_1 - \ddot x_{1d} = x_3 - \ddot x_{1d} \nonumber\\ \end{align} e1e2e3=x1x1d=e˙1=x˙1x˙1d=x2x˙1d=e˙2=x¨1x¨1d=x3x¨1d
设计滑模面
s = c 1 e 1 + c 2 e 2 + e 3 s = c_1 e_1 + c_2 e_2 + e_3 s=c1e1+c2e2+e3
设计李雅普诺夫函数
V = 1 2 s 2 V = \frac{1}{2} s ^ 2 V=21s2
对李雅普诺夫函数进行求导
V ˙ = s s ˙ = s ( c 1 e ˙ 1 + c 2 e ˙ 2 + e ˙ 3 ) = s ( c 1 e 2 + c 2 e 3 + x 3 − x ¨ 1 d ( 3 ) ) = s ( c 1 e 2 + c 2 e 3 + x 3 − f ( x ) + g ( x ) u − x 1 d ( 3 ) ) = s ( Γ − f ( x ) + g ( x ) u − x 1 d ( 3 ) ) = s g ( x ) ( Γ − f ( x ) − x 1 d ( 3 ) g ( x ) + u ) \begin{align} \dot V &= s \dot s \nonumber\\ &= s (c_1 \dot e_1 + c_2 \dot e_2 + \dot e_3) \nonumber\\ &= s (c_1 e_2 + c_2 e_3 + x_3 - \ddot x^{(3)}_{1d}) \nonumber\\ &= s (c_1 e_2 + c_2 e_3 + x_3 - f(x) + g(x)u - x^{(3)}_{1d}) \nonumber\\ &= s (\Gamma - f(x) + g(x)u - x^{(3)}_{1d}) \nonumber\\ &= sg(x)(\frac {\Gamma - f(x) - x^{(3)}_{1d}} {g(x)} + u) \nonumber\\ \end{align} V˙=ss˙=s(c1e˙1+c2e˙2+e˙3)=s(c1e2+c2e3+x3x¨1d(3))=s(c1e2+c2e3+x3f(x)+g(x)ux1d(3))=s(Γf(x)+g(x)ux1d(3))=sg(x)(g(x)Γf(x)x1d(3)+u)
这里我们设计趋近律
s ˙ = − ε s g n ( s ) = Γ − f ( x ) + g ( x ) u − x 1 d ( 3 ) \dot s = - \varepsilon sgn(s) = \Gamma - f(x) + g(x)u - x^{(3)}_{1d} s˙=εsgn(s)=Γf(x)+g(x)ux1d(3)
得到控制量 u u u
u = − ε s g n ( s ) − Γ + f ( x ) + x 1 d ( 3 ) g ( x ) u = \frac {-\varepsilon sgn(s) - \Gamma + f(x) + x^{(3)}_{1d}} {g(x)} u=g(x)εsgn(s)Γ+f(x)+x1d(3)
带入李雅普诺夫函数可得
V ˙ = − s ε s g n ( s ) = − ε ∣ s ∣ ≤ 0 \dot V = -s \varepsilon sgn(s) = -\varepsilon |s| \le 0 V˙=sεsgn(s)=εs0
这里可以看到系统必将稳定,如果需要控制到达稳定的时间就限制 ε \varepsilon ε 即可文章来源地址https://www.toymoban.com/news/detail-411009.html

到了这里,关于滑模控制理论(SMC)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器人动力学与控制学习笔记(十七)——基于名义模型的机器人滑模控制

            滑模运动包括趋近运动和滑模运动两个过程。系统从任意初始状态趋向切换面,直到到达切换面的运动称为趋近运动,即趋近运动为的过程。根据滑模变结构原理,滑模可达性条件仅保证由状态空间任意位置运动点在有限时间内到达切换面的要求,而对于趋近运动的

    2024年02月12日
    浏览(48)
  • 无刷直流电机矢量控制(四):基于滑模观测器的无传感器控制

            在越来越多的应用场景中,无刷直流电机开始采用无位置传感器的控制方式。无刷直流电机运行于中高转速时,可以利用反电势信号估算转子位置,具体实现的方法不止一种,应用较多的是滑模观测器法。         本文整理了该方法的基本原理,介绍了在MAT

    2023年04月09日
    浏览(61)
  • (2-3-3)位置控制算法:无人机运动控制系统——基于自适应反演滑模控制器的仿真测试

    2.3.5  基于自适应反演滑模控制器的仿真测试 文件test/fault_AISMC.py实现了一个基于非线性动力学模型的无人机飞行控制仿真环境,通过使用自适应反演滑模控制器(Adaptive Inverse Sliding Mode Control,AdaptiveISMC_nonlinear)对无人机进行控制,并引入了执行器故障模型以模拟实际飞行中

    2024年04月16日
    浏览(50)
  • PMSM无感foc控制(滑模-反正切-PLL)【仿真模型搭建教程】(附模型)

    本文主要目的是教大家如何把文献中的公式转换成仿真模型。 首先介绍滑模控制的原理及如何搭建simulink模型。 1.1基于反电势估计位置原理         永磁同步电机在静止坐标系αβ下的电压方程: 扩展反电动势包含转子位置信息,并且αβ 轴下 扩展反电动势的反正切函数

    2023年04月08日
    浏览(87)
  • MATLAB:电机控制(Motor Control)

             花了好大心血完成了一份留学作业系列——1:电机控制设计;供大家参考,文末有MATLAB程序及无水印Word文档。         Control design is very important in for power electronics, such as the application on converters and motor control. In this lab, we will learn how to design a PI controller for a D

    2024年02月07日
    浏览(36)
  • 电脑风扇控制 -- Macs Fan Control Pro

    Macs Fan Control Pro是一款专业的Mac风扇控制软件,旨在帮助用户更好地管理和控制Mac电脑的风扇。该软件提供了实时监测风扇速度和温度的功能,以及自定义风扇转速策略设置,能够解决Mac电脑过热问题,并提高电脑性能和稳定性。同时,该软件还具有直观易用的界面和多种特

    2024年01月24日
    浏览(39)
  • AI 与控制:神经网络模型用于模型预测控制(Model Predictive Control)

    最优控制理论处理的问题通常是找到一个满足容许控制的 u*,把它作用于系统(被控对象)ẋ(t)=f(x(t),u(t),t) 从而可以得到系统的状态轨迹 x(t),使得目标函数最优。对于轨迹跟踪问题,那目标函数就是使得这个轨迹在一定的时间范围[t0tf]内与我们期望的轨迹(目标)x*(t) 越近

    2024年02月04日
    浏览(51)
  • K8S访问控制------认证(authentication )、授权(authorization )、准入控制(admission control )体系

    在K8S体系中有两种账号类型:User accounts(用户账号),即针对human user的;Service accounts(服务账号),即针对pod的。这两种账号都可以访问 API server,都需要经历认证、授权、准入控制等步骤,相关逻辑图如下所示: 在K8S架构中,可以使用多种认证方式,比如:X509 Client Cer

    2024年02月11日
    浏览(36)
  • 【网络编程】TCP传输控制协议(Transmission Control Protocol)

    (꒪ꇴ꒪ ),Hello我是 祐言QAQ 我的博客主页:C/C++语言,数据结构,Linux基础,ARM开发板,网络编程等领域UP🌍 快上🚘,一起学习,让我们成为一个强大的攻城狮! 送给自己和读者的一句鸡汤🤔: 集中起来的意志可以击穿顽石! 作者水平很有限,如果发现错误,请在评论区指

    2024年02月09日
    浏览(43)
  • 机器人模型预测控制MPC(model predictive control)

    当前控制动作是在每一个采样瞬间通过求解一个有限时域开环最优控制问题而获得。过程的当前状态作为最优控制问题的初始状态,解得的最优控制序列只实施第一个控制作用。这是它与那些使用预先计算控制律的算法的最大不同。本质上模型预测控制求解一个开环最优控制

    2024年02月07日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包